M Database Inspector (cheetah)
Not logged in. Login

OriginOfSpecies - 475 Rows
Column Type #Values Column Stats
id int(11) 475 Column Stats
subject varchar(80) 14 Column Stats
title varchar(250) 139 Column Stats
ordinal int(11) 30 Column Stats
description text 474 Column Stats

475 rows, page 11 of 119 (4/p)
1 5 6 7 8 9 10 11 12 13 14 15 16 17 20 30 40 50 60 70 100 119

Export to Excel select * from OriginOfSpecies order by description desc limit 40, 4 (Page 11: Row)
subject
title
ordinal
description Desending Order (top row is last)
13 - Mutual Affinities of Organic Beings: Morphology: Embryology: Rudimentary Or 13-09 - MORPHOLOGY, between members of the same class, between parts of the same individual 10 We have seen that the members of the same class, independently of their habits of life, resemble each other in the general plan of their organisation.

This resemblance is often expressed by the term `unity of type;' or by saying that the several parts and organs in the different species of the class are homologous.

The whole subject is included under the general name of Morphology.

This is the most interesting department of natural history, and may be said to be its very soul.

What can be more curious than that the hand of a man, formed for grasping, that of a mole for digging, the leg of the horse, the paddle of the porpoise, and the wing of the bat, should all be constructed on the same pattern, and should include the same bones, in the same relative positions? Geoffroy St Hilaire has insisted strongly on the high importance of relative connexion in homologous organs: the parts may change to almost any extent in form and size, and yet they always remain connected together in the same order.

We never find, for instance, the bones of the arm and forearm, or of the thigh and leg, transposed.

Hence the same names can be given to the homologous bones in widely different animals.

We see the same great law in the construction of the mouths of insects: what can be more different than the immensely long spiral proboscis of a sphinx-moth, the curious folded one of a bee or bug, and the great jaws of a beetle? yet all these organs, serving for such different purposes, are formed by infinitely numerous modifications of an upper lip, mandibles, and two pairs of maxillae.

Analogous laws govern the construction of the mouths and limbs of crustaceans.

So it is with the flowers of plants.

Nothing can be more hopeless than to attempt to explain this similarity of pattern in members of the same class, by utility or by the doctrine of final causes.

The hopelessness of the attempt has been expressly admitted by Owen in his most interesting work on the `Nature of Limbs.' On the ordinary view of the independent creation of each being, we can only say that so it is; that it has so pleased the Creator to construct each animal and plant.

The explanation is manifest on the theory of the natural selection of successive slight modifications, each modification being profitable in some way to the modified form, but often affecting by correlation of growth other parts of the organisation.

In changes of this nature, there will be little or no tendency to modify the original pattern, or to transpose parts.

The bones of a limb might be shortened and widened to any extent, and become gradually enveloped in thick membrane, so as to serve as a fin; or a webbed foot might have all its bones, or certain bones, lengthened to any extent, and the membrane connecting them increased to any extent, so as to serve as a wing: yet in all this great amount of modification there will be no tendency to alter the framework of bones or the relative connexion of the several parts.

If we suppose that the ancient progenitor, the archetype as it may be called, of all mammals, had its limbs constructed on the existing general pattern, for whatever purpose they served, we can at once perceive the plain signification of the homologous construction of the limbs throughout the whole class.

So with the mouths of insects, we have only to suppose that their common progenitor had an upper lip, mandibles, and two pair of maxillae, these parts being perhaps very simple in form; and then natural selection will account for the infinite diversity in structure and function of the mouths of insects.

Nevertheless, it is conceivable that the general pattern of an organ might become so much obscured as to be finally lost, by the atrophy and ultimately by the complete abortion of certain parts, by the soldering together of other parts, and by the doubling or multiplication of others, variations which we know to be within the limits of possibility.

In the paddles of the extinct gigantic sea-lizards, and in the mouths of certain suctorial crustaceans, the general pattern seems to have been thus to a certain extent obscured.

There is another and equally curious branch of the present subject; namely, the comparison not of the same part in different members of a class, but of the different parts or organs in the same individual.

Most physiologists believe that the bones of the skull are homologous with that is correspond in number and in relative connexion with the elemental parts of a certain number of vertebrae.

The anterior and posterior limbs in each member of the vertebrate and articulate classes are plainly homologous.

We see the same law in comparing the wonderfully complex jaws and legs in crustaceans.

It is familiar to almost every one, that in a flower the relative position of the sepals, petals, stamens, and pistils, as well as their intimate structure, are intelligible in the view that they consist of metamorphosed leaves, arranged in a spire.

In monstrous plants, we often get direct evidence of the possibility of one organ being transformed into another; and we can actually see in embryonic crustaceans and in many other animals, and in flowers, that organs which when mature become extremely different, are at an early stage of growth exactly alike.

How inexplicable are these facts on the ordinary view of creation! Why should the brain be enclosed in a box composed of such numerous and such extraordinarily shaped pieces of bone? As Owen has remarked, the benefit derived from the yielding of the separate pieces in the act of parturition of mammals, will by no means explain the same construction in the skulls of birds.

Why should similar bones have been created in the formation of the wing and leg of a bat, used as they are for such totally different purposes? Why should one crustacean, which has an extremely complex mouth formed of many parts, consequently always have fewer legs; or conversely, those with many legs have simpler mouths? Why should the sepals, petals, stamens, and pistils in any individual flower, though fitted for such widely different purposes, be all constructed on the same pattern ?

On the theory of natural selection, we can satisfactorily answer these questions.

In the vertebrata, we see a series of internal vertebrae bearing certain processes and appendages; in the articulata, we see the body divided into a series of segments, bearing external appendages; and in flowering plants, we see a series of successive spiral whorls of leaves.

An indefinite repetition of the same part or organ is the common characteristic (as Owen has observed) of all low or little-modified forms; therefore we may readily believe that the unknown progenitor of the vertebrata possessed many vertebrae; the unknown progenitor of the articulata, many segments; and the unknown progenitor of flowering plants, many spiral whorls of leaves.

We have formerly seen that parts many times repeated are eminently liable to vary in number and structure; consequently it is quite probable that natural selection, during a long-continued course of modification, should have seized on a certain number of the primordially similar elements, many times repeated, and have adapted them to the most diverse purposes.

And as the whole amount of modification will have been effected by slight successive steps, we need not wonder at discovering in such parts or organs, a certain degree of fundamental resemblance, retained by the strong principle of inheritance.

In the great class of molluscs, though we can homologise the parts of one species with those of another and distinct species, we can indicate but few serial homologies; that is, we are seldom enabled to say that one part or organ is homologous with another in the same individual.

And we can understand this fact; for in molluscs, even in the lowest members of the class, we do not find nearly so much indefinite repetition of any one part, as we find in the other great classes of the animal and vegetable kingdoms.

Naturalists frequently speak of the skull as formed of metamorphosed vertebrae: the jaws of crabs as metamorphosed legs; the stamens and pistils of flowers as metamorphosed leaves; but it would in these cases probably be more correct, as Professor Huxley has remarked, to speak of both skull and vertebrae, both jaws and legs, &c., as having been metamorphosed, not one from the other, but from some common element.

Naturalists, however, use such language only in a metaphorical sense: they are far from meaning that during a long course of descent, primordial organs of any kind vertebrae in the one case and legs in the other have actually been modified into skulls or jaws.

Yet so strong is the appearance of a modification of this nature having occurred, that naturalists can hardly avoid employing language having this plain signification.

On my view these terms may be used literally; and the wonderful fact of the jaws, for instance, of a crab retaining numerous characters, which they would probably have retained through inheritance, if they had really been metamorphosed during a long course of descent from true legs, or from some simple appendage, is explained.
04 - Natural Selection 04-14 - Summary of Chapter 30 We have seen that it is the common, the widely-diffused and widely-ranging species, belonging to the larger genera within each class, which vary most; and these tend to transmit to their modified offspring that superiority which now makes them dominant in their own countries.

Natural selection, as has just been remarked, leads to divergence of character and to much extinction of the less improved and intermediate forms of life.

On these principles, the nature of the affinities, and the generally well-defined distinctions between the innumerable organic beings in each class throughout the world, may be explained.

It is a truly wonderful fact- the wonder of which we are apt to overlook from familiarity- that all animals and all plants throughout all time and space should be related to each other in groups, subordinate to groups, in the manner which we everywhere behold- namely, varieties of the same species most closely related, species of the same genus less closely and unequally related, forming sections and sub-genera, species of distinct genera much less closely related, and genera related in different degrees, forming sub-families, families, orders, sub-classes and classes.

The several subordinate groups in any class cannot be ranked in a single file, but seem clustered round points, and these round other points, and so on in almost endless cycles.

If species had been independently created, no explanation would have been possible of this kind of classification; but it is explained through inheritance and the complex action of natural selection, entailing extinction and divergence of character, as we have seen illustrated in the diagram.
Full Size
06 - Difficutiles in Theory 06-13 - Summary: The Law of Unity of Type and of the Conditions of Existence Embraced by the Theory of Natural Selection 50 We have seen that in two beings widely remote from each other in the natural scale, organs serving for the same purpose and in external appearance closely similar may have been separately and independently formed; but when such organs are closely examined, essential differences in their structure can almost always be detected; and this naturally follows from the principle of natural selection.

On the other hand, the common rule throughout nature is infinite diversity of structure for gaining the same end; and this again naturally follows from the same great principle.

In many cases we are far too ignorant to be enabled to assert that a part or organ is so unimportant for the welfare of a species, that modifications in its structure could not have been slowly accumulated by means of natural selection.

In many other cases, modifications are probably the direct result of the laws of variation or of growth, independently of any good having been thus gained.

But even such structures have often, as we may feel assured, been subsequently taken advantage of, and still further modified, for the good of species under new conditions of life.

We may, also, believe that a part formerly of high importance has frequently been retained (as the tail of an aquatic animal by its terrestrial descendants), though it has become of such small importance that it could not, in its present state, have been acquired by means of natural selection.
04 - Natural Selection 04-11 - Divergence of Character 260 We have seen that in each country it is the species belonging to the larger genera which oftenest present varieties or incipient species.

This, indeed, might have been expected; for, as natural selection acts through one form having some advantage over other forms in the struggle for existence, it will chiefly act on those which already have some advantage; and the largeness of any group shows that its species have inherited from a common ancestor some advantage in common.

Hence, the struggle for the production of new and modified descendants will mainly lie between the larger groups which are all trying to increase in number.

One large group will slowly conquer another large group, reduce its numbers, and thus lessen its chance of further variation and improvement.

Within the same large group, the later and more highly perfected sub-groups, from branching out and seizing on many new places in the polity of Nature, will constantly tend to supplant and destroy the earlier and less improved sub-groups. Small and broken groups and sub-groups will finally disappear.

Looking to the future, we can predict that the groups of organic beings which are now large and triumphant, and which are least broken up, that is, which have as yet suffered least extinction, will, for a long period, continue to increase. But which groups will ultimately prevail, no man can predict; for we know that many groups formerly most extensively developed, have now become extinct.

Looking still more remotely to the future, we may predict that, owing to the continued and steady increase of the larger groups, a multitude of smaller groups will become utterly extinct, and leave no modified descendants; and consequently that, of the species living at any one period, extremely few will transmit descendants to a remote futurity.

I shall have to return to this subject in the chapter on Classification, but I may add that as, according to this view, extremely few of the more ancient species have transmitted descendants to the present day, and, as all the descendants of the same species form a class, we can understand how it is that there exist so few classes in each main division of the animal and vegetable kingdoms.

Although few of the most ancient species have left modified descendants' yet, at remote geological periods, the earth may have been almost as well peopled with species of many genera, families, orders, and classes, as at the present time.

Charles Darwin
Charles Darwin