M Database Inspector (cheetah)
Not logged in. Login

OriginOfSpecies - 475 Rows
Column Type #Values Column Stats
id int(11) 475 Column Stats
subject varchar(80) 14 Column Stats
title varchar(250) 139 Column Stats
ordinal int(11) 30 Column Stats
description text 474 Column Stats

475 rows, page 109 of 119 (4/p)
1 50 60 70 80 90 100 103 104 105 106 107 108 109 110 111 112 113 114 115 119

Export to Excel select * from OriginOfSpecies order by subject limit 432, 4 (Page 109: Row)
subject Desending Order (top row is first)
title
ordinal
description
13 - Mutual Affinities of Organic Beings: Morphology: Embryology: Rudimentary Or 13-05 - Descent always used in classification 40 Geographical distribution may sometimes be brought usefully into play in classing large and widely-distributed genera, because all the species of the same genus, inhabiting any distinct and isolated region, have in all probability descended from the same parents.

We can understand, on these views, the very important distinction between real affinities and analogical or adaptive resemblances.

Lamarck first called attention to this distinction, and he has been ably followed by Macleay and others.

Jean Baptiste Lamarck
Jean Baptiste Lamarck

William Sharp Macleay
William Sharp Macleay
13 - Mutual Affinities of Organic Beings: Morphology: Embryology: Rudimentary Or 13-05 - Descent always used in classification 60 On my view of characters being of real importance for classification, only in so far as they reveal descent, we can clearly understand why analogical or adaptive character, although of the utmost importance to the welfare of the being, are almost valueless to the systematist.

For animals, belonging to two most distinct lines of descent, may readily become adapted to similar conditions, and thus assume a close external resemblance; but such resemblances will not reveal will rather tend to conceal their blood-relationship to their proper lines of descent.

We can also understand the apparent paradox, that the very same characters are analogical when one class or order is compared with another, but give true affinities when the members of the same class or order are compared one with another: thus the shape of the body and fin-like limbs are only analogical when whales are compared with fishes, being adaptations in both classes for swimming through the water; but the shape of the body and fin-like limbs serve as characters exhibiting true affinity between the several members of the whale family; for these cetaceans agree in so many characters, great and small, that we cannot doubt that they have inherited their general shape of body and structure of limbs from a common ancestor.

whale
whale

fish
fish


So it is with fishes.
13 - Mutual Affinities of Organic Beings: Morphology: Embryology: Rudimentary Or 13-03 - Rules and difficulties in classification, explained on the theory of descent with modification 110 Instances could be given amongst plants and insects, of a group of forms, first ranked by practised naturalists as only a genus, and then raised to the rank of a sub-family or family; and this has been done, not because further research has detected important structural differences, at first overlooked, but because numerous allied species, with slightly different grades of difference, have been subsequently discovered.

All the foregoing rules and aids and difficulties in classification are explained, if I do not greatly deceive myself, on the view that the natural system is founded on descent with modification; that the characters which naturalists consider as showing true affinity between any two or more species, are those which have been inherited from a common parent, and, in so far, all true classification is genealogical; that community of descent is the hidden bond which naturalists have been unconsciously seeking, and not some unknown plan of creation, or the enunciation of general propositions, and the mere putting together and separating objects more or less alike.

But I must explain my meaning more fully.

I believe that the arrangement of the groups within each class, in due subordination and relation to the other groups, must be strictly genealogical in order to be natural; but that the amount of difference in the several branches or groups, though allied in the same degree in blood to their common progenitor, may differ greatly, being due to the different degrees of modification which they have undergone; and this is expressed by the forms being ranked under different genera, families, sections, or orders.

The reader will best understand what is meant, if he will take the trouble of referring to the diagram in the fourth chapter.

Full Size
13 - Mutual Affinities of Organic Beings: Morphology: Embryology: Rudimentary Or 13-05 - Descent always used in classification 30 As descent has universally been used in classing together the individuals of the same species, though the males and females and larvae are sometimes extremely different; and as it has been used in classing varieties which have undergone a certain, and sometimes a considerable amount of modification, may not this same element of descent have been unconsciously used in grouping species under genera, and genera under higher groups, though in these cases the modification has been greater in degree, and has taken a longer time to complete?

I believe it has thus been unconsciously used; and only thus can I understand the several rules and guides which have been followed by our best systematists.

We have no written pedigrees; we have to make out community of descent by resemblances of any kind.

Therefore we choose those characters which, as far as we can judge, are the least likely to have been modified in relation to the conditions of life to which each species has been recently exposed.

Rudimentary structures on this view are as good as, or even sometimes better than, other parts of the organisation.

We care not how trifling a character may be let it be the mere inflection of the angle of the jaw, the manner in which an insect's wing is folded, whether the skin be covered by hair or feathers if it prevail throughout many and different species, especially those having very different habits of life, it assumes high value; for we can account for its presence in so many forms with such different habits, only by its inheritance from a common parent.

We may err in this respect in regard to single points of structure, but when several characters, let them be ever so trifling, occur together throughout a large group of beings having different habits, we may feel almost sure, on the theory of descent, that these characters have been inherited from a common ancestor.

And we know that such correlated or aggregated characters have especial value in classification.

We can understand why a species or a group of species may depart, in several of its most important characteristics, from its allies, and yet be safely classed with them.

This may be safely done, and is often done, as long as a sufficient number of characters, let them be ever so unimportant, betrays the hidden bond of community of descent.

Let two forms have not a single character in common, yet if these extreme forms are connected together by a chain of intermediate groups, we may at once infer their community of descent, and we put them all into the same class.

As we find organs of high physiological importance those which serve to preserve life under the most diverse conditions of existence are generally the most constant, we attach especial value to them; but if these same organs, in another group or section of a group, are found to differ much, we at once value them less in our classification.

We shall hereafter, I think, clearly see why embryological characters are of such high classificatory importance.

embryo
embryo