M Database Inspector (cheetah)
Not logged in. Login

133 rows, page 3 of 34 (4/p)
1 2 3 4 5 6 7 8 9 20 30 34

Export to Excel select * from OriginOfSpecies where ordinal = '10' order by description desc limit 8, 4 (Page 3: Row)
description Desending Order (top row is last)
05 - Laws of Variation 05-06 - False Correlation 10 We may often falsely attribute to correlated variation structures which are common to whole groups of species, and which in truth are simply due to inheritance; for an ancient progenitor may have acquired through natural selection some one modification in structure, and, after thousands of generations, some other and independent modification; and these two modifications, having been transmitted to a whole group of descendants with diverse habits, would naturally be thought to be in some necessary manner correlated.
13 - Mutual Affinities of Organic Beings: Morphology: Embryology: Rudimentary Or 13-09 - MORPHOLOGY, between members of the same class, between parts of the same individual 10 We have seen that the members of the same class, independently of their habits of life, resemble each other in the general plan of their organisation.

This resemblance is often expressed by the term `unity of type;' or by saying that the several parts and organs in the different species of the class are homologous.

The whole subject is included under the general name of Morphology.

This is the most interesting department of natural history, and may be said to be its very soul.

What can be more curious than that the hand of a man, formed for grasping, that of a mole for digging, the leg of the horse, the paddle of the porpoise, and the wing of the bat, should all be constructed on the same pattern, and should include the same bones, in the same relative positions? Geoffroy St Hilaire has insisted strongly on the high importance of relative connexion in homologous organs: the parts may change to almost any extent in form and size, and yet they always remain connected together in the same order.

We never find, for instance, the bones of the arm and forearm, or of the thigh and leg, transposed.

Hence the same names can be given to the homologous bones in widely different animals.

We see the same great law in the construction of the mouths of insects: what can be more different than the immensely long spiral proboscis of a sphinx-moth, the curious folded one of a bee or bug, and the great jaws of a beetle? yet all these organs, serving for such different purposes, are formed by infinitely numerous modifications of an upper lip, mandibles, and two pairs of maxillae.

Analogous laws govern the construction of the mouths and limbs of crustaceans.

So it is with the flowers of plants.

Nothing can be more hopeless than to attempt to explain this similarity of pattern in members of the same class, by utility or by the doctrine of final causes.

The hopelessness of the attempt has been expressly admitted by Owen in his most interesting work on the `Nature of Limbs.' On the ordinary view of the independent creation of each being, we can only say that so it is; that it has so pleased the Creator to construct each animal and plant.

The explanation is manifest on the theory of the natural selection of successive slight modifications, each modification being profitable in some way to the modified form, but often affecting by correlation of growth other parts of the organisation.

In changes of this nature, there will be little or no tendency to modify the original pattern, or to transpose parts.

The bones of a limb might be shortened and widened to any extent, and become gradually enveloped in thick membrane, so as to serve as a fin; or a webbed foot might have all its bones, or certain bones, lengthened to any extent, and the membrane connecting them increased to any extent, so as to serve as a wing: yet in all this great amount of modification there will be no tendency to alter the framework of bones or the relative connexion of the several parts.

If we suppose that the ancient progenitor, the archetype as it may be called, of all mammals, had its limbs constructed on the existing general pattern, for whatever purpose they served, we can at once perceive the plain signification of the homologous construction of the limbs throughout the whole class.

So with the mouths of insects, we have only to suppose that their common progenitor had an upper lip, mandibles, and two pair of maxillae, these parts being perhaps very simple in form; and then natural selection will account for the infinite diversity in structure and function of the mouths of insects.

Nevertheless, it is conceivable that the general pattern of an organ might become so much obscured as to be finally lost, by the atrophy and ultimately by the complete abortion of certain parts, by the soldering together of other parts, and by the doubling or multiplication of others, variations which we know to be within the limits of possibility.

In the paddles of the extinct gigantic sea-lizards, and in the mouths of certain suctorial crustaceans, the general pattern seems to have been thus to a certain extent obscured.

There is another and equally curious branch of the present subject; namely, the comparison not of the same part in different members of a class, but of the different parts or organs in the same individual.

Most physiologists believe that the bones of the skull are homologous with that is correspond in number and in relative connexion with the elemental parts of a certain number of vertebrae.

The anterior and posterior limbs in each member of the vertebrate and articulate classes are plainly homologous.

We see the same law in comparing the wonderfully complex jaws and legs in crustaceans.

It is familiar to almost every one, that in a flower the relative position of the sepals, petals, stamens, and pistils, as well as their intimate structure, are intelligible in the view that they consist of metamorphosed leaves, arranged in a spire.

In monstrous plants, we often get direct evidence of the possibility of one organ being transformed into another; and we can actually see in embryonic crustaceans and in many other animals, and in flowers, that organs which when mature become extremely different, are at an early stage of growth exactly alike.

How inexplicable are these facts on the ordinary view of creation! Why should the brain be enclosed in a box composed of such numerous and such extraordinarily shaped pieces of bone? As Owen has remarked, the benefit derived from the yielding of the separate pieces in the act of parturition of mammals, will by no means explain the same construction in the skulls of birds.

Why should similar bones have been created in the formation of the wing and leg of a bat, used as they are for such totally different purposes? Why should one crustacean, which has an extremely complex mouth formed of many parts, consequently always have fewer legs; or conversely, those with many legs have simpler mouths? Why should the sepals, petals, stamens, and pistils in any individual flower, though fitted for such widely different purposes, be all constructed on the same pattern ?

On the theory of natural selection, we can satisfactorily answer these questions.

In the vertebrata, we see a series of internal vertebrae bearing certain processes and appendages; in the articulata, we see the body divided into a series of segments, bearing external appendages; and in flowering plants, we see a series of successive spiral whorls of leaves.

An indefinite repetition of the same part or organ is the common characteristic (as Owen has observed) of all low or little-modified forms; therefore we may readily believe that the unknown progenitor of the vertebrata possessed many vertebrae; the unknown progenitor of the articulata, many segments; and the unknown progenitor of flowering plants, many spiral whorls of leaves.

We have formerly seen that parts many times repeated are eminently liable to vary in number and structure; consequently it is quite probable that natural selection, during a long-continued course of modification, should have seized on a certain number of the primordially similar elements, many times repeated, and have adapted them to the most diverse purposes.

And as the whole amount of modification will have been effected by slight successive steps, we need not wonder at discovering in such parts or organs, a certain degree of fundamental resemblance, retained by the strong principle of inheritance.

In the great class of molluscs, though we can homologise the parts of one species with those of another and distinct species, we can indicate but few serial homologies; that is, we are seldom enabled to say that one part or organ is homologous with another in the same individual.

And we can understand this fact; for in molluscs, even in the lowest members of the class, we do not find nearly so much indefinite repetition of any one part, as we find in the other great classes of the animal and vegetable kingdoms.

Naturalists frequently speak of the skull as formed of metamorphosed vertebrae: the jaws of crabs as metamorphosed legs; the stamens and pistils of flowers as metamorphosed leaves; but it would in these cases probably be more correct, as Professor Huxley has remarked, to speak of both skull and vertebrae, both jaws and legs, &c., as having been metamorphosed, not one from the other, but from some common element.

Naturalists, however, use such language only in a metaphorical sense: they are far from meaning that during a long course of descent, primordial organs of any kind vertebrae in the one case and legs in the other have actually been modified into skulls or jaws.

Yet so strong is the appearance of a modification of this nature having occurred, that naturalists can hardly avoid employing language having this plain signification.

On my view these terms may be used literally; and the wonderful fact of the jaws, for instance, of a crab retaining numerous characters, which they would probably have retained through inheritance, if they had really been metamorphosed during a long course of descent from true legs, or from some simple appendage, is explained.
06 - Difficutiles in Theory 06-13 - Summary: The Law of Unity of Type and of the Conditions of Existence Embraced by the Theory of Natural Selection 10 We have in this chapter discussed some of the difficulties and objections which may be urged against the theory.

Many of them are serious; but I think that in the discussion light has been thrown on several facts, which on the belief of independent acts of creation are utterly obscure.

We have seen that species at any one period are not indefinitely variable, and are not linked together by a multitude of intermediate gradations, partly because the process of natural selection is always very slow, and at any one time acts only on a few forms; and partly because the very process of natural selection implies the continual supplanting and extinction of preceding and intermediate gradations.

Closely allied species, now living on a continuous area, must often have been formed when the area was not continuous, and when the conditions of life did not insensibly graduate away from one part to another.

When two varieties are formed in two districts of a continuous area, an intermediate variety will often be formed, fitted for an intermediate zone; but from reasons assigned, the intermediate variety will usually exist in lesser numbers than the two forms which it connects; consequently the two latter, during the course of further modification, from existing in greater numbers, will have a great advantage over the less numerous intermediate variety, and will thus generally succeed in supplanting and exterminating it.
10 - On The Geological Succession of Organic Beings 10-05 - On Extinction 10 We have as yet spoken only incidentally of the disappearance of species and of groups of species.

On the theory of natural selection the extinction of old forms and the production of new and improved forms are intimately connected together.

The old notion of all the inhabitants of the earth having been swept away at successive periods by catastrophes, is very generally given up, even by those geologists, as Elie de Beaumont, Murchison, Barrande, &c., whose general views would naturally lead them to this conclusion.

Elie de Beaumont
Elie de Beaumont

Roderick Murchison
Roderick Murchison

Joachim Barrande
Joachim Barrande

On the contrary, we have every reason to believe, from the study of the tertiary formations, that species and groups of species gradually disappear, one after another, first from one spot, then from another, and finally from the world.

Both single species and whole groups of species last for very unequal periods; some groups, as we have seen, having endured from the earliest known dawn of life to the present day; some having disappeared before the close of the palaeozoic period.

No fixed law seems to determine the length of time during which any single species or any single genus endures.

There is reason to believe that the complete extinction of the species of a group is generally a slower process than their production: if the appearance and disappearance of a group of species be represented, as before, by a vertical line of varying thickness, the line is found to taper more gradually at its upper end, which marks the progress of extermination, than at its lower end, which marks the first appearance and increase in numbers of the species.

In some cases, however, the extermination of whole groups of beings, as of ammonites towards the close of the secondary period, has been wonderfully sudden.

The whole subject of the extinction of species has been involved in the most gratuitous mystery.

Some authors have even supposed that as the individual has a definite length of life, so have species a definite duration.

No one I think can have marvelled more at the extinction of species, than I have done.

When I found in La Plata the tooth of a horse embedded with the remains of Mastodon, Megatherium, Toxodon, and other extinct monsters, which all co-existed with still living shells at a very late geological period, I was filled with astonishment; for seeing that the horse, since its introduction by the Spaniards into South America, has run wild over the whole country and has increased in numbers at an unparalleled rate, I asked myself what could so recently have exterminated the former horse under conditions of life apparently so favourable.

La Plata
La Plata





Land Shell
Land Shell

South America
South America

But how utterly groundless was my astonishment! Professor Owen soon perceived that the tooth, though so like that of the existing horse, belonged to an extinct species.

Richard Owen
Richard Owen

Had this horse been still living, but in some degree rare, no naturalist would have felt the least surprise at its rarity; for rarity is the attribute of a vast number of species of all classes, in all countries.

If we ask ourselves why this or that species is rare, we answer that something is unfavourable in its conditions of life; but what that something is, we can hardly ever tell.

On the supposition of the fossil horse still existing as a rare species, we might have felt certain from the analogy of all other mammals, even of the slow-breeding elephant, and from the history of the naturalisation of the domestic horse in South America, that under more favourable conditions it would in a very few years have stocked the whole continent.


But we could not have told what the unfavourable conditions were which checked its increase, whether some one or several contingencies, and at what period of the horse's life, and in what degree, they severally acted.

If the conditions had gone on, however slowly, becoming less and less favourable, we assuredly should not have perceived the fact, yet the fossil horse would certainly have become rarer and rarer, and finally extinct; its place being seized on by some more successful competitor.

It is most difficult always to remember that the increase of every living being is constantly being checked by unperceived injurious agencies; and that these same unperceived agencies are amply sufficient to cause rarity, and finally extinction.

We see in many cases in the more recent tertiary formations, that rarity precedes extinction; and we know that this has been the progress of events with those animals which have been exterminated, either locally or wholly, through man's agency.

I may repeat what I published in 1845, namely, that to admit that species generally become rare before they become extinct to feel no surprise at the rarity of a species, and yet to marvel greatly when it ceases to exist, is much the same as to admit that sickness in the individual is the forerunner of death to feel no surprise at sickness, but when the sick man dies, to wonder and to suspect that he died by some unknown deed of violence.


The theory of natural selection is grounded on the belief that each new variety, and ultimately each new species, is produced and maintained by having some advantage over those with which it comes into competition; and the consequent extinction of less-favoured forms almost inevitably follows.

It is the same with our domestic productions: when a new and slightly improved variety has been raised, it at first supplants the less improved varieties in the same neighbourhood; when much improved it is transported far and near, like our short-horn cattle, and takes the place of other breeds in other countries.


Thus the appearance of new forms and the disappearance of old forms, both natural and artificial, are bound together.

In certain flourishing groups, the number of new specific forms which have been produced within a given time is probably greater than that of the old forms which have been exterminated; but we know that the number of species has not gone on indefinitely increasing, at least during the later geological periods, so that looking to later times we may believe that the production of new forms has caused the extinction of about the same number of old forms.

The competition will generally be most severe, as formerly explained and illustrated by examples, between the forms which are most like each other in all respects.

Hence the improved and modified descendants of a species will generally cause the extermination of the parent-species; and if many new forms have been developed from any one species, the nearest allies of that species, i.e. the species of the same genus, will be the most liable to extermination.

Thus, as I believe, a number of new species descended from one species, that is a new genus, comes to supplant an old genus, belonging to the same family.

But it must often have happened that a new species belonging to some one group will have seized on the place occupied by a species belonging to a distinct group, and thus caused its extermination; and if many allied forms be developed from the successful intruder, many will have to yield their places; and it will generally be allied forms, which will suffer from some inherited inferiority in common.

But whether it be species belonging to the same or to a distinct class, which yield their places to other species which have been modified and improved, a few of the sufferers may often long be preserved, from being fitted to some peculiar line of life, or from inhabiting some distant and isolated station, where they have escaped severe competition.

For instance, a single species of Trigonia, a great genus of shells in the secondary formations, survives in the Australian seas; and a few members of the great and almost extinct group of Ganoid fishes still inhabit our fresh waters.


Therefore the utter extinction of a group is generally, as we have seen, a slower process than its production.

With respect to the apparently sudden extermination of whole families or orders, as of Trilobites at the close of the palaeozoic period and of Ammonites at the close of the secondary period, we must remember what has been already said on the probable wide intervals of time between our consecutive formations; and in these intervals there may have been much slow extermination.



Moreover, when by sudden immigration or by unusually rapid development, many species of a new group have taken possession of a new area, they will have exterminated in a correspondingly rapid manner many of the old inhabitants; and the forms which thus yield their places will commonly be allied, for they will partake of some inferiority in common.

Thus, as it seems to me, the manner in which single species and whole groups of species become extinct, accords well with the theory of natural selection.

We need not marvel at extinction; if we must marvel, let it be at our presumption in imagining for a moment that we understand the many complex contingencies, on which the existence of each species depends.

If we forget for an instant, that each species tends to increase inordinately, and that some check is always in action, yet seldom perceived by us, the whole economy of nature will be utterly obscured.

Whenever we can precisely say why this species is more abundant in individuals than that; why this species and not another can be naturalised in a given country; then, and not till then, we may justly feel surprise why we cannot account for the extinction of this particular species or group of species.