M Database Inspector (cheetah)
Not logged in. Login


133 rows, page 16 of 34 (4/p)
1 10 11 12 13 14 15 16 17 18 19 20 21 22 30 34

Export to Excel select * from OriginOfSpecies where ordinal = '10' order by description limit 60, 4 (Page 16: Row)
subject
title
ordinal
description Desending Order (top row is first)
13 - Mutual Affinities of Organic Beings: Morphology: Embryology: Rudimentary Or 13-10 - EMBRYOLOGY, laws of, explained by variations not supervening at an early age, and being inherited at a corresponding age 10 It has already been casually remarked that certain organs in the individual, which when mature become widely different and serve for different purposes, are in the embryo exactly alike.

The embryos, also, of distinct animals within the same class are often strikingly similar: a better proof of this cannot be given, than a circumstance mentioned by Agassiz, namely, that having forgotten to ticket the embryo of some vertebrate animal, he cannot now tell whether it be that of a mammal, bird, or reptile.

The vermiform larvae of moths, flies, beetles, &c., resemble each other much more closely than do the mature insects; but in the case of larvae, the embryos are active, and have been adapted for special lines of life.

A trace of the law of embryonic resemblance, sometimes lasts till a rather late age: thus birds of the same genus, and of closely allied genera, often resemble each other in their first and second plumage; as we see in the spotted feathers in the thrush group.

In the cat tribe, most of the species are striped or spotted in lines; and stripes can be plainly distinguished in the whelp of the lion.

We occasionally though rarely see something of this kind in plants: thus the embryonic leaves of the ulex or furze, and the first leaves of the phyllodineous acaceas, are pinnate or divided like the ordinary leaves of the leguminosae.

The points of structure, in which the embryos of widely different animals of the same class resemble each other, often have no direct relation to their conditions of existence.

We cannot, for instance, suppose that in the embryos of the vertebrata the peculiar loop-like course of the arteries near the branchial slits are related to similar conditions, in the young mammal which is nourished in the womb of its mother, in the egg of the bird which is hatched in a nest, and in the spawn of a frog under water.

We have no more reason to believe in such a relation, than we have to believe that the same bones in the hand of a man, wing of a bat, and fin of a porpoise, are related to similar conditions of life.

No one will suppose that the stripes on the whelp of a lion, or the spots on the young blackbird, are of any use to these animals, or are related to the conditions to which they are exposed.

The case, however, is different when an animal during any part of its embryonic career is active, and has to provide for itself.

The period of activity may come on earlier or later in life; but whenever it comes on, the adaptation of the larva to its conditions of life is just as perfect and as beautiful as in the adult animal.

From such special adaptations, the similarity of the larvae or active embryos of allied animals is sometimes much obscured; and cases could be given of the larvae of two species, or of two groups of species, differing quite as much, or even more, from each other than do their adult parents.

In most cases, however, the larvae, though active, still obey more or less closely the law of common embryonic resemblance.

Cirripedes afford a good instance of this: even the illustrious Cuvier did not perceive that a barnacle was, as it certainly is, a crustacean; but a glance at the larva shows this to be the case in an unmistakeable manner.

So again the two main divisions of cirripedes, the pedunculated and sessile, which differ widely in external appearance, have larvae in all their several stages barely distinguishable.

The embryo in the course of development generally rises in organisation: I use this expression, though I am aware that it is hardly possible to define clearly what is meant by the organisation being higher or lower.

But no one probably will dispute that the butterfly is higher than the caterpillar.

In some cases, however, the mature animal is generally considered as lower in the scale than the larva, as with certain parasitic crustaceans.

To refer once again to cirripedes: the larvae in the first stage have three pairs of legs, a very simple single eye, and a probosciformed mouth, with which they feed largely, for they increase much in size.

In the second stage, answering to the chrysalis stage of butterflies, they have six pairs of beautifully constructed natatory legs, a pair of magnificent compound eyes, and extremely complex antennae; but they have a closed and imperfect mouth, and cannot feed: their function at this stage is, to search by their well-developed organs of sense, and to reach by their active powers of swimming, a proper place on which to become attached and to undergo their final metamorphosis.

When this is completed they are fixed for life: their legs are now converted into prehensile organs; they again obtain a well-constructed mouth; but they have no antennae, and their two eyes are now reconverted into a minute, single, and very simple eye-spot.

In this last and complete state, cirripedes may be considered as either more highly or more lowly organised than they were in the larval condition.

But in some genera the larvae become developed either into hermaphrodites having the ordinary structure, or into what I have called complemental males: and in the latter, the development has assuredly been retrograde; for the male is a mere sack, which lives for a short time, and is destitute of mouth, stomach, or other organ of importance, excepting for reproduction.

We are so much accustomed to see differences in structure between the embryo and the adult, and likewise a close similarity in the embryos of widely different animals within the same class, that we might be led to look at these facts as necessarily contingent in some manner on growth.

But there is no obvious reason why, for instance, the wing of a bat, or the fin of a porpoise, should not have been sketched out with all the parts in proper proportion, as soon as any structure became visible in the embryo.

And in some whole groups of animals and in certain members of other groups, the embryo does not at any period differ widely from the adult: thus Owen has remarked in regard to cuttle-fish, `there is no metamorphosis; the cephalopodic character is manifested long before the parts of the embryo are completed;' and again in spiders, `there is nothing worthy to be called a metamorphosis.' The larvae of insects, whether adapted to the most diverse and active habits, or quite inactive, being fed by their parents or placed in the midst of proper nutriment, yet nearly all pass through a similar worm-like stage of development; but in some few cases, as in that of Aphis, if we look to the admirable drawings by Professor Huxley of the development of this insect, we see no trace of the vermiform stage.

How, then, can we explain these several facts in embryology, namely the very general, but not universal difference in structure between the embryo and the adult; of parts in the same individual embryo, which ultimately become very unlike and serve for diverse purposes, being at this early period of growth alike; of embryos of different species within the same class, generally, but not universally, resembling each other; of the structure of the embryo not being closely related to its conditions of existence, except when the embryo becomes at any period of life active and has to provide for itself; of the embryo apparently having sometimes a higher organisation than the mature animal, into which it is developed.

I believe that all these facts can be explained, as follows, on the view of descent with modification.

It is commonly assumed, perhaps from monstrosities often affecting the embryo at a very early period, that slight variations necessarily appear at an equally early period.

But we have little evidence on this head indeed the evidence rather points the other way; for it is notorious that breeders of cattle, horses, and various fancy animals, cannot positively tell, until some time after the animal has been born, what its merits or form will ultimately turn out.

We see this plainly in our own children; we cannot always tell whether the child will be tall or short, or what its precise features will be.

The question is not, at what period of life any variation has been caused, but at what period it is fully displayed.

The cause may have acted, and I believe generally has acted, even before the embryo is formed; and the variation may be due to the male and female sexual elements having been affected by the conditions to which either parent, or their ancestors, have been exposed.

Nevertheless an effect thus caused at a very early period, even before the formation of the embryo, may appear late in life; as when an hereditary disease, which appears in old age alone, has been communicated to the offspring from the reproductive element of one parent.

Or again, as when the horns of cross-bred cattle have been affected by the shape of the horns of either parent.

For the welfare of a very young animal, as long as it remains in its mother's womb, or in the egg, or as long as it is nourished and protected by its parent, it must be quite unimportant whether most of its characters are fully acquired a little earlier or later in life.

It would not signify, for instance, to a bird which obtained its food best by having a long beak, whether or not it assumed a beak of this particular length, as long as it was fed by its parents.

Hence, I conclude, that it is quite possible, that each of the many successive modifications, by which each species has acquired its present structure, may have supervened at a not very early period of life; and some direct evidence from our domestic animals supports this view.

But in other cases it is quite possible that each successive modification, or most of them, may have appeared at an extremely early period.

I have stated in the first chapter, that there is some evidence to render it probable, that at whatever age any variation first appears in the parent, it tends to reappear at a corresponding age in the offspring.

Certain variations can only appear at corresponding ages, for instance, peculiarities in the caterpillar, cocoon, or imago states of the silk-moth; or, again, in the horns of almost full-grown cattle.

But further than this, variations which, for all that we can see, might have appeared earlier or later in life, tend to appear at a corresponding age in the offspring and parent.

I am far from meaning that this is invariably the case; and I could give a good many cases of variations (taking the word in the largest sense) which have supervened at an earlier age in the child than in the parent.

These two principles, if their truth be admitted, will, I believe, explain all the above specified leading facts in embryology.

But first let us look at a few analogous cases in domestic varieties.

Some authors who have written on Dogs, maintain that the greyhound and bulldog, though appearing so different, are really varieties most closely allied, and have probably descended from the same wild stock; hence I was curious to see how far their puppies differed from each other: I was told by breeders that they differed just as much as their parents, and this, judging by the eye, seemed almost to be the case; but on actually measuring the old dogs and their six-days old puppies, I found that the puppies had not nearly acquired their full amount of proportional difference.

So, again, I was told that the foals of cart and race-horses differed as much as the full-grown animals; and this surprised me greatly, as I think it probable that the difference between these two breeds has been wholly caused by selection under domestication; but having had careful measurements made of the dam and of a three-days old colt of a race and heavy cart-horse, I find that the colts have by no means acquired their full amount of proportional difference.

As the evidence appears to me conclusive, that the several domestic breeds of pigeon have descended from one wild species, I compared young pigeons of various breeds, within twelve hours after being hatched; I carefully measured the proportions (but will not here give details) of the beak, width of mouth, length of nostril and of eyelid, size of feet and length of leg, in the wild stock, in pouters, fantails, runts, barbs, dragons, carriers, and tumblers.

Now some of these birds, when mature, differ so extraordinarily in length and form of beak, that they would, I cannot doubt, be ranked in distinct genera, had they been natural productions.

But when the nestling birds of these several breeds were placed in a row, though most of them could be distinguished from each other, yet their proportional differences in the above specified several points were incomparably less than in the full-grown birds.

Some characteristic points of difference for instance, that of the width of mouth -- could hardly be detected in the young.

But there was one remarkable exception to this rule, for the young of the short-faced tumbler differed from the young of the wild rock-pigeon and of the other breeds, in all its proportions, almost exactly as much as in the adult state.

The two principles above given seem to me to explain these facts in regard to the later embryonic stages of our domestic varieties.

Fanciers select their horses, dogs, and pigeons, for breeding, when they are nearly grown up: they are indifferent whether the desired qualities and structures have been acquired earlier or later in life, if the full-grown animal possesses them.

And the cases just given, more especially that of pigeons, seem to show that the characteristic differences which give value to each breed, and which have been accumulated by man's selection, have not generally first appeared at an early period of life, and have been inherited by the offspring at a corresponding not early period.

But the case of the short-faced tumbler, which when twelve hours old had acquired its proper proportions, proves that this is not the universal rule; for here the characteristic differences must either have appeared at an earlier period than usual, or, if not so, the differences must have been inherited, not at the corresponding, but at an earlier age.

Now let us apply these facts and the above two principles which latter, though not proved true, can be shown to be in some degree probable to species in a state of nature.

Let us take a genus of birds, descended on my theory from some one parent-species, and of which the several new species have become modified through natural selection in accordance with their diverse habits.

Then, from the many slight successive steps of variation having supervened at a rather late age, and having been inherited at a corresponding age, the young of the new species of our supposed genus will manifestly tend to resemble each other much more closely than do the adults, just as we have seen in the case of pigeons.

We may extend this view to whole families or even classes.

The fore-limbs, for instance, which served as legs in the parent-species, may become, by a long course of modification, adapted in one descendant to act as hands, in another as paddles, in another as wings; and on the above two principles namely of each successive modification supervening at a rather late age, and being inherited at a corresponding late age the fore-limbs in the embryos of the several descendants of the parent-species will still resemble each other closely, for they will not have been modified.

But in each individual new species, the embryonic fore-limbs will differ greatly from the fore-limbs in the mature animal; the limbs in the latter having undergone much modification at a rather late period of life, and having thus been converted into hands, or paddles, or wings.

Whatever influence long-continued exercise or use on the one hand, and disuse on the other, may have in modifying an organ, such influence will mainly affect the mature animal, which has come to its full powers of activity and has to gain its own living; and the effects thus produced will be inherited at a corresponding mature age.

Whereas the young will remain unmodified, or be modified in a lesser degree, by the effects of use and disuse.

In certain cases the successive steps of variation might supervene, from causes of which we are wholly ignorant, at a very early period of life, or each step might be inherited at an earlier period than that at which it first appeared.

In either case (as with the short-faced tumbler) the young or embryo would closely resemble the mature parent-form.

We have seen that this is the rule of development in certain whole groups of animals, as with cuttle-fish and spiders, and with a few members of the great class of insects, as with Aphis.

With respect to the final cause of the young in these cases not undergoing any metamorphosis, or closely resembling their parents from their earliest age, we can see that this would result from the two following contingencies; firstly, from the young, during a course of modification carried on for many generations, having to provide for their own wants at a very early stage of development, and secondly, from their following exactly the same habits of life with their parents; for in this case, it would be indispensable for the existence of the species, that the child should be modified at a very early age in the same manner with its parents, in accordance with their similar habits.

Some further explanation, however, of the embryo not undergoing any metamorphosis is perhaps requisite.

If, on the other hand, it profited the young to follow habits of life in any degree different from those of their parent, and consequently to be constructed in a slightly different manner, then, on the principle of inheritance at corresponding ages, the active young or larvae might easily be rendered by natural selection different to any conceivable extent from their parents.

Such differences might, also, become correlated with successive stages of development; so that the larvae, in the first stage, might differ greatly from the larvae in the second stage, as we have seen to be the case with cirripedes.

The adult might become fitted for sites or habits, in which organs of locomotion or of the senses, &c., would be useless; and in this case the final metamorphosis would be said to be retrograde.

As all the organic beings, extinct and recent, which have ever lived on this earth have to be classed together, and as all have been connected by the finest gradations, the best, or indeed, if our collections were nearly perfect, the only possible arrangement, would be genealogical.

Descent being on my view the hidden bond of connexion which naturalists have been seeking under the term of the natural system.

On this view we can understand how it is that, in the eyes of most naturalists, the structure of the embryo is even more important for classification than that of the adult.

For the embryo is the animal in its less modified state; and in so far it reveals the structure of its progenitor.

In two groups of animal, however much they may at present differ from each other in structure and habits, if they pass through the same or similar embryonic stages, we may feel assured that they have both descended from the same or nearly similar parents, and are therefore in that degree closely related.

Thus, community in embryonic structure reveals community of descent.

It will reveal this community of descent, however much the structure of the adult may have been modified and obscured; we have seen, for instance, that cirripedes can at once be recognised by their larvae as belonging to the great class of crustaceans.

As the embryonic state of each species and group of species partially shows us the structure of their less modified ancient progenitors, we can clearly see why ancient and extinct forms of life should resemble the embryos of their descendants, our existing species.

Agassiz believes this to be a law of nature; but I am bound to confess that I only hope to see the law hereafter proved true.

It can be proved true in those cases alone in which the ancient state, now supposed to be represented in many embryos, has not been obliterated, either by the successive variations in a long course of modification having supervened at a very early age, or by the variations having been inherited at an earlier period than that at which they first appeared.

It should also be borne in mind, that the supposed law of resemblance of ancient forms of life to the embryonic stages of recent forms, may be true, but yet, owing to the geological record not extending far enough back in time, may remain for a long period, or for ever, incapable of demonstration.

Thus, as it seems to me, the leading facts in embryology, which are second in importance to none in natural history, are explained on the principle of slight modifications not appearing, in the many descendants from some one ancient progenitor, at a very early period in the life of each, though perhaps caused at the earliest, and being inherited at a corresponding not early period.

Embryology rises greatly in interest, when we thus look at the embryo as a picture, more or less obscured, of the common parent-form of each great class of animals.
09 - On the Imperfection of the Geological Record 09-06 - On the absence of intermediate varieties in any one formation 10 It is all-important to remember that naturalists have no golden rule by which to distinguish species and varieties; they grant some little variability to each species, but when they meet with a somewhat greater amount of difference between any two forms, they rank both as species, unless they are enabled to connect them together by close intermediate gradations.

And this from the reasons just assigned we can seldom hope to effect in any one geological section.

Supposing B and C to be two species, and a third, A, to be found in an underlying bed; even if A were strictly intermediate between B and C, it would simply be ranked as a third and distinct species, unless at the same time it could be most closely connected with either one or both forms by intermediate varieties.

Nor should it be forgotten, as before explained, that A might be the actual progenitor of B and C, and yet might not at all necessarily be strictly intermediate between them in all points of structure.

So that we might obtain the parent-species and its several modified descendants from the lower and upper beds of a formation, and unless we obtained numerous transitional gradations, we should not recognise their relationship, and should consequently be compelled to rank them all as distinct species.

It is notorious on what excessively slight differences many palaeontologists have founded their species; and they do this the more readily if the specimens come from different sub-stages of the same formation.

Some experienced conchologists are now sinking many of the very fine species of D'Orbigny and others into the rank of varieties; and on this view we do find the kind of evidence of change which on my theory we ought to find.

Moreover, if we look to rather wider intervals, namely, to distinct but consecutive stages of the same great formation, we find that the embedded fossils, though almost universally ranked as specifically different, yet are far more closely allied to each other than are the species found in more widely separated formations; but to this subject I shall have to return in the following chapter.

One other consideration is worth notice: with animals and plants that can propagate rapidly and are not highly locomotive, there is reason to suspect, as we have formerly seen, that their varieties are generally at first local; and that such local varieties do not spread widely and supplant their parent-forms until they have been modified and perfected in some considerable degree.

According to this view, the chance of discovering in a formation in any one country all the early stages of transition between any two forms, is small, for the successive changes are supposed to have been local or confined to some one spot.

Most marine animals have a wide range; and we have seen that with plants it is those which have the widest range, that oftenest present varieties; so that with shells and other marine animals, it is probably those which have had the widest range, far exceeding the limits of the known geological formations of Europe, which have oftenest given rise, first to local varieties and ultimately to new species; and this again would greatly lessen the chance of our being able to trace the stages of transition in any one geological formation.

Sea Shell
Sea Shell

Europe
Europe


It should not be forgotten, that at the present day, with perfect specimens for examination, two forms can seldom be connected by intermediate varieties and thus proved to be the same species, until many specimens have been collected from many places; and in the case of fossil species this could rarely be effected by palaeontologists.

We shall, perhaps, best perceive the improbability of our being enabled to connect species by numerous, fine, intermediate, fossil links, by asking ourselves whether, for instance, geologists at some future period will be able to prove, that our different breeds of cattle, sheep, horses, and dogs have descended from a single stock or from several aboriginal stocks; or, again, whether certain sea-shells inhabiting the shores of North America, which are ranked by some conchologists as distinct species from their European representatives, and by other conchologists as only varieties, are really varieties or are, as it is called, specifically distinct.

cattle
cattle

sheep
sheep

horses
horses

dog
dog

Sea Shell
Sea Shell

North America
North America

europe
europe


This could be effected only by the future geologist discovering in a fossil state numerous intermediate gradations; and such success seems to me improbable in the highest degree.

fossil
fossil


Geological research, though it has added numerous species to existing and extinct genera, and has made the intervals between some few groups less wide than they otherwise would have been, yet has done scarcely anything in breaking down the distinction between species, by connecting them together by numerous, fine, intermediate varieties; and this not having been effected, is probably the gravest and most obvious of all the many objections which may be urged against my views.

Hence it will be worth while to sum up the foregoing remarks, under an imaginary illustration.

The Malay Archipelago is of about the size of Europe from the North Cape to the Mediterranean, and from Britain to Russia; and therefore equals all the geological formations which have been examined with any accuracy, excepting those of the United States of America.

Malay Archipelago
Malay Archipelago

europe
europe

North Cape
North Cape

cattle
cattle

Britain
Britain

Russia
Russia

United States of America
United States of America


I fully agree with Mr Godwin-Austen, that the present condition of the Malay Archipelago, with its numerous large islands separated by wide and shallow seas, probably represents the former state of Europe, when most of our formations were accumulating.

Henry Haversham Godwin-Austen
Henry Haversham Godwin-Austen


The Malay Archipelago is one of the richest regions of the whole world in organic beings; yet if all the species were to be collected which have ever lived there, how imperfectly would they represent the natural history of the world!

Malay Archipelago
Malay Archipelago


But we have every reason to believe that the terrestrial productions of the archipelago would be preserved in an excessively imperfect manner in the formations which we suppose to be there accumulating.

I suspect that not many of the strictly littoral animals, or of those which lived on naked submarine rocks, would be embedded; and those embedded in gravel or sand, would not endure to a distant epoch.

Wherever sediment did not accumulate on the bed of the sea, or where it did not accumulate at a sufficient rate to protect organic bodies from decay, no remains could be preserved.

In our archipelago, I believe that fossiliferous formations could be formed of sufficient thickness to last to an age, as distant in futurity as the secondary formations lie in the past, only during periods of subsidence.

These periods of subsidence would be separated from each other by enormous intervals, during which the area would be either stationary or rising; whilst rising, each fossiliferous formation would be destroyed, almost as soon as accumulated, by the incessant coast-action, as we now see on the shores of South America.

South America
South America


During the periods of subsidence there would probably be much extinction of life; during the periods of elevation, there would be much variation, but the geological record would then be least perfect.

It may be doubted whether the duration of any one great period of subsidence over the whole or part of the archipelago, together with a contemporaneous accumulation of sediment, would exceed the average duration of the same specific forms; and these contingencies are indispensable for the preservation of all the transitional gradations between any two or more species.

If such gradations were not fully preserved, transitional varieties would merely appear as so many distinct species.

It is, also, probable that each great period of subsidence would be interrupted by oscillations of level, and that slight climatal changes would intervene during such lengthy periods; and in these cases the inhabitants of the archipelago would have to migrate, and no closely consecutive record of their modifications could be preserved in any one formation.

Very many of the marine inhabitants of the archipelago now range thousands of miles beyond its confines; and analogy leads me to believe that it would be chiefly these far-ranging species which would oftenest produce new varieties; and the varieties would at first generally be local or confined to one place, but if possessed of any decided advantage, or when further modified and improved, they would slowly spread and supplant their parent-forms.

When such varieties returned to their ancient homes, as they would differ from their former state, in a nearly uniform, though perhaps extremely slight degree, they would, according to the principles followed by many palaeontologists, be ranked as new and distinct species.

If then, there be some degree of truth in these remarks, we have no right to expect to find in our geological formations, an infinite number of those fine transitional forms, which on my theory assuredly have connected all the past and present species of the same group into one long and branching chain of life.

We ought only to look for a few links, some more closely, some more distantly related to each other; and these links, let them be ever so close, if found in different stages of the same formation, would, by most palaeontologists, be ranked as distinct species.

But I do not pretend that I should ever have suspected how poor a record of the mutations of life, the best preserved geological section presented, had not the difficulty of our not discovering innumerable transitional links between the species which appeared at the commencement and close of each formation, pressed so hardly on my theory.
08 - Hybridism 08-02 - Sterility various in degree, not universal, affected by close interbreeding, removed by domestication 10 It is certain, on the one hand, that the sterility of various species when crossed is so different in degree and graduates away so insensibly, and, on the other hand, that the fertility of pure species is so easily affected by various circumstances, that for all practical purposes it is most difficult to say where perfect fertility ends and sterility begins.

I think no better evidence of this can be required than that the two most experienced observers who have ever lived, namely, Koelreuter and Gaertner, should have arrived at diametrically opposite conclusions in regard to the very same species.

It is also most instructive to compare but I have not space here to enter on details the evidence advanced by our best botanists on the question whether certain doubtful forms should be ranked as species or varieties, with the evidence from fertility adduced by different hybridisers, or by the same author, from experiments made during different years.

It can thus be shown that neither sterility nor fertility affords any clear distinction between species and varieties; but that the evidence from this source graduates away, and is doubtful in the same degree as is the evidence derived from other constitutional and structural differences.

In regard to the sterility of hybrids in successive generations; though Gaertner was enabled to rear some hybrids, carefully guarding them from a cross with either pure parent, for six or seven, and in one case for ten generations, yet he asserts positively that their fertility never increased, but generally greatly decreased.

I do not doubt that this is usually the case, and that the fertility often suddenly decreases in the first few generations.

Nevertheless I believe that in all these experiments the fertility has been diminished by an independent cause, namely, from close interbreeding.

I have collected so large a body of facts, showing that close interbreeding lessens fertility, and, on the other hand, that an occasional cross with a distinct individual or variety increases fertility, that I cannot doubt the correctness of this almost universal belief amongst breeders.

Hybrids are seldom raised by experimentalists in great numbers; and as the parent-species, or other allied hybrids, generally grow in the same garden, the visits of insects must be carefully prevented during the flowering season: hence hybrids will generally be fertilised during each generation by their own individual pollen; and I am convinced that this would be injurious to their fertility, already lessened by their hybrid origin.

I am strengthened in this conviction by a remarkable statement repeatedly made by Gaertner, namely, that if even the less fertile hybrids be artificially fertilised with hybrid pollen of the same kind, their fertility, notwithstanding the frequent ill effects of manipulation, sometimes decidedly increases, and goes on increasing.

Now, in artificial fertilisation pollen is as often taken by chance (as I know from my own experience) from the anthers of another flower, as from the anthers of the flower itself which is to be fertilised; so that a cross between two flowers, though probably on the same plant, would be thus effected.

Moreover, whenever complicated experiments are in progress, so careful an observer as Gaertner would have castrated his hybrids, and this would have insured in each generation a cross with the pollen from a distinct flower, either from the same plant or from another plant of the same hybrid nature.

And thus, the strange fact of the increase of fertility in the successive generations of artificially fertilised hybrids may, I believe, be accounted for by close interbreeding having been avoided.

Now let us turn to the results arrived at by the third most experienced hybridiser, namely, the Hon. and Rev. W. Herbert.

He is as emphatic in his conclusion that some hybrids are perfectly fertile as fertile as the pure parent-species as are Koelreuter and Gaertner that some degree of sterility between distinct species is a universal law of nature.

He experimentised on some of the very same species as did Gaertner.

The difference in their results may, I think, be in part accounted for by Herbert's great horticultural skill, and by his having hothouses at his command.

hothouse
hothouse


Of his many important statements I will here give only a single one as an example, namely, that 'every ovule in a pod of Crinum capense fertilised by C. revolutum produced a plant, which (he says) I never saw to occur in a case of its natural fecundation.'

crinum
crinum


So that we here have perfect, or even more than commonly perfect, fertility in a first cross between two distinct species.

This case of the Crinum leads me to refer to a most singular fact, namely, that there are individual plants, as with certain species of Lobelia, and with all the species of the genus Hippeastrum, which can be far more easily fertilised by the pollen of another and distinct species, than by their own pollen.

lobelia
lobelia

hippeastrum
hippeastrum


For these plants have been found to yield seed to the pollen of a distinct species, though quite sterile with their own pollen, notwithstanding that their own pollen was found to be perfectly good, for it fertilised distinct species.

So that certain individual plants and all the individuals of certain species can actually be hybridised much more readily than they can be self-fertilised!

For instance, a bulb of Hippeastrum aulicum produced four flowers; three were fertilised by Herbert with their own pollen, and the fourth was subsequently fertilised by the pollen of a compound hybrid descended from three other and distinct species: the result was that 'the ovaries of the three first flowers soon ceased to grow, and after a few days perished entirely, whereas the pod impregnated by the pollen of the hybrid made vigorous growth and rapid progress to maturity, and bore good seed, which vegetated freely.'

In a letter to me, in 1839, Mr Herbert told me that he had then tried the experiment during five years, and he continued to try it during several subsequent years, and always with the same result.

This result has, also, been confirmed by other observers in the case of Hippeastrum with its sub-genera, and in the case of some other genera, as Lobelia, Passiflora and Verbascum.

passiflora
passiflora

verbascum
verbascum


Although the plants in these experiments appeared perfectly healthy, and although both the ovules and pollen of the same flower were perfectly good with respect to other species, yet as they were functionally imperfect in their mutual self-action, we must infer that the plants were in an unnatural state.

ovule
ovule

pollen
pollen


Nevertheless these facts show on what slight and mysterious causes the lesser or greater fertility of species when crossed, in comparison with the same species when self-fertilised, sometimes depends.

The practical experiments of horticulturists, though not made with scientific precision, deserve some notice. It is notorious in how complicated a manner the species of Pelargonium, Fuchsia, Calceolaria, Petunia, Rhododendron, &c., have been crossed, yet many of these hybrids seed freely.

pelargonium
pelargonium

fuchsia
fuchsia

calceolaria
calceolaria

petunia
petunia

rhododendron
rhododendron


For instance, Herbert asserts that a hybrid from Calceolaria integrifolia and plantaginea, species most widely dissimilar in general habit, 'reproduced itself as perfectly as if it had been a natural species from the mountains of Chile.'

integrifolia
integrifolia

plantaginea
plantaginea

Chile
Chile


I have taken some pains to ascertain the degree of fertility of some of the complex crosses of Rhododendrons, and I am assured that many of them are perfectly fertile. Mr C. Noble, for instance, informs me that he raises stocks for grafting from a hybrid between Rhod.

rhododendrons
rhododendrons


Ponticum and Catawbiense, and that this hybrid 'seeds as freely as it is possible to imagine.'

rhododendron ponticum
rhododendron ponticum

rhododendron catawbiense
rhododendron catawbiense


Had hybrids, when fairly treated, gone on decreasing in fertility in each successive generation, as Gaertner believes to be the case, the fact would have been notorious to nurserymen.

Horticulturists raise large beds of the same hybrids, and such alone are fairly treated, for by insect agency the several individuals of the same hybrid variety are allowed to freely cross with each other, and the injurious influence of close interbreeding is thus prevented.

Any one may readily convince himself of the efficiency of insect-agency by examining the flowers of the more sterile kinds of hybrid rhododendrons, which produce no pollen, for he will find on their stigmas plenty of pollen brought from other flowers.

In regard to animals, much fewer experiments have been carefully tried than with plants.

If our systematic arrangements can be trusted, that is if the genera of animals are as distinct from each other, as are the genera of plants, then we may infer that animals more widely separated in the scale of nature can be more easily crossed than in the case of plants; but the hybrids themselves are, I think, more sterile.

I doubt whether any case of a perfectly fertile hybrid animal can be considered as thoroughly well authenticated.

It should, however, be borne in mind that, owing to few animals breeding freely under confinement, few experiments have been fairly tried: for instance, the canary-bird has been crossed with nine other finches, but as not one of these nine species breeds freely in confinement, we have no right to expect that the first crosses between them and the canary, or that their hybrids, should be perfectly fertile.

canary
canary

finch
finch


Again, with respect to the fertility in successive generations of the more fertile hybrid animals, I hardly know of an instance in which two families of the same hybrid have been raised at the same time from different parents, so as to avoid the ill effects of close interbreeding.

On the contrary, brothers and sisters have usually been crossed in each successive generation, in opposition to the constantly repeated admonition of every breeder.

And in this case, it is not at all surprising that the inherent sterility in the hybrids should have gone on increasing. If we were to act thus, and pair brothers and sisters in the case of any pure animal, which from any cause had the least tendency to sterility, the breed would assuredly be lost in a very few generations.

Although I do not know of any thoroughly well-authenticated cases of perfectly fertile hybrid animals, I have some reason to believe that the hybrids from Cervulus vaginalis and Reevesii, and from Phasianus colchicus with p. torquatus and with p. versicolor are perfectly fertile.

reevesii
reevesii

Phasianus Colchicus
Phasianus Colchicus

Phasianus Torquatus
Phasianus Torquatus


The hybrids from the common and Chinese geese (A. cygnoides), species which are so different that they are generally ranked in distinct genera, have often bred in this country with either pure parent, and in one single instance they have bred inter se.

goose
goose

Chinese Goose
Chinese Goose


This was effected by Mr Eyton, who raised two hybrids from the same parents but from different hatches; and from these two birds he raised no less than eight hybrids (grandchildren of the pure geese) from one nest.

In India, however, these cross-bred geese must be far more fertile; for I am assured by two eminently capable judges, namely Mr Blyth and Capt. Hutton, that whole flocks of these crossed geese are kept in various parts of the country; and as they are kept for profit, where neither pure parent-species exists, they must certainly be highly fertile.

India
India


A doctrine which originated with Pallas, has been largely accepted by modern naturalists; namely, that most of our domestic animals have descended from two or more aboriginal species, since commingled by intercrossing.

On this view, the aboriginal species must either at first have produced quite fertile hybrids, or the hybrids must have become in subsequent generations quite fertile under domestication.

This latter alternative seems to me the most probable, and I am inclined to believe in its truth, although its rests on no direct evidence.

I believe, for instance, that our dogs have descended from several wild stocks; yet, with perhaps the exception of certain indigenous domestic dogs of South America, all are quite fertile together; and analogy makes me greatly doubt, whether the several aboriginal species would at first have freely bred together and have produced quite fertile hybrids.

dog
dog

South America
South America


So again there is reason to believe that our European and the humped Indian cattle are quite fertile together; but from facts communicated to me by Mr Blyth, I think they must be considered as distinct species.

On this view of the origin of many of our domestic animals, we must either give up the belief of the almost universal sterility of distinct species of animals when crossed; or we must look at sterility, not as an indelible characteristic, but as one capable of being removed by domestication.

Finally, looking to all the ascertained facts on the intercrossing of plants and animals, it may be concluded that some degree of sterility, both in first crosses and in hybrids, is an extremely general result; but that it cannot, under our present state of knowledge, be considered as absolutely universal.

Laws governing the Sterility of first Crosses and of Hybrids.

We will now consider a little more in detail the circumstances and rules governing the sterility of first crosses and of hybrids.

Our chief object will be to see whether or not the rules indicate that species have specially been endowed with this quality, in order to prevent their crossing and blending together in utter confusion.

The following rules and conclusions are chiefly drawn up from Gaertner's admirable work on the hybridisation of plants.

I have taken much pains to ascertain how far the rules apply to animals, and considering how scanty our knowledge is in regard to hybrid animals, I have been surprised to find how generally the same rules apply to both kingdoms.

It has been already remarked, that the degree of fertility, both of first crosses and of hybrids, graduates from zero to perfect fertility.

It is surprising in how many curious ways this gradation can be shown to exist; but only the barest outline of the facts can here be given.

When pollen from a plant of one family is placed on the stigma of a plant of a distinct family, it exerts no more influence than so much inorganic dust.

pollen
pollen


From this absolute zero of fertility, the pollen of different species of the same genus applied to the stigma of some one species, yields a perfect gradation in the number of seeds produced, up to nearly complete or even quite complete fertility; and, as we have seen, in certain abnormal cases, even to an excess of fertility, beyond that which the plant's own pollen will produce.

stigma
stigma


So in hybrids themselves, there are some which never have produced, and probably never would produce, even with the pollen of either pure parent, a single fertile seed: but in some of these cases a first trace of fertility may be detected, by the pollen of one of the pure parent-species causing the flower of the hybrid to wither earlier than it otherwise would have done; and the early withering of the flower is well known to be a sign of incipient fertilisation.

From this extreme degree of sterility we have self-fertilised hybrids producing a greater and greater number of seeds up to perfect fertility.

Hybrids from two species which are very difficult to cross, and which rarely produce any offspring, are generally very sterile; but the parallelism between the difficulty of making a first cross, and the sterility of the hybrids thus produced two classes of facts which are generally confounded together is by no means strict.

There are many cases, in which two pure species can be united with unusual facility, and produce numerous hybrid-offspring, yet these hybrids are remarkably sterile. On the other hand, there are species which can be crossed very rarely, or with extreme difficulty, but the hybrids, when at last produced, are very fertile.

Even within the limits of the same genus, for instance in Dianthus, these two opposite cases occur.

The fertility, both of first crosses and of hybrids, is more easily affected by unfavourable conditions, than is the fertility of pure species.

But the degree of fertility is likewise innately variable; for it is not always the same when the same two species are crossed under the same circumstances, but depends in part upon the constitution of the individuals which happen to have been chosen for the experiment.

So it is with hybrids, for their degree of fertility is often found to differ greatly in the several individuals raised from seed out of the same capsule and exposed to exactly the same conditions.

By the term systematic affinity is meant, the resemblance between species in structure and in constitution, more especially in the structure of parts which are of high physiological importance and which differ little in the allied species.

Now the fertility of first crosses between species, and of the hybrids produced from them, is largely governed by their systematic affinity.

This is clearly shown by hybrids never having been raised between species ranked by systematists in distinct families; and on the other hand, by very closely allied species generally uniting with facility.

But the correspondence between systematic affinity and the facility of crossing is by no means strict.

A multitude of cases could be given of very closely allied species which will not unite, or only with extreme difficulty; and on the other hand of very distinct species which unite with the utmost facility.

In the same family there may be a genus, as Dianthus, in which very many species can most readily be crossed; and another genus, as Silene, in which the most persevering efforts have failed to produce between extremely close species a single hybrid.

dianthus
dianthus

silene
silene


Even within the limits of the same genus, we meet with this same difference; for instance, the many species of Nicotiana have been more largely crossed than the species of almost any other genus; but Gaertner found that N. acuminata, which is not a particularly distinct species, obstinately failed to fertilise, or to be fertilised by, no less than eight other species of Nicotiana.

nicotiana
nicotiana


Very many analogous facts could be given.
03 - Struggle for Existence 03-12 - Summary 10 It is good thus to try in imagination to give to any one species an advantage over another.

Probably in no single instance should we know what to do.

This ought to convince us of our ignorance on the mutual relations of all organic beings; a conviction as necessary as it is difficult to acquire.