M Database Inspector (cheetah)
Not logged in. Login


133 rows, page 9 of 34 (4/p)
1 3 4 5 6 7 8 9 10 11 12 13 14 15 20 30 34

Export to Excel select * from OriginOfSpecies where ordinal = '10' order by description limit 32, 4 (Page 9: Row)
subject
title
ordinal
description Desending Order (top row is first)
05 - Laws of Variation 05-02 - Use and Disuse of Parts, combined with Natural Selection, Organs of Flight and Vision 10 From the facts alluded to in the first chapter, I think there can be no doubt that use in our domestic animals has strengthened and enlarged certain parts, and disuse diminished them; and that such modifications are inherited.

Under free nature, we have no standard of comparison, by which to judge of the effects of long-continued use or disuse, for we know not the parent-forms; but many animals possess structures which can be best explained by the effects of disuse.

As Professor Owen has remarked, there is no greater anomaly in nature than a bird that cannot fly; yet there are several in this state.

fowl
fowl


The logger-headed duck of South America can only flap along the surface of the water, and has its wings in nearly the same condition as the domestic Aylesbury duck: it is a remarkable fact that the young birds, according to Mr. Cunningham, can fly, while the adults have lost this power.

ducks
ducks

South America
South America


As the larger ground-feeding birds seldom take flight except to escape danger, it is probable that the nearly wingless condition of several birds, now inhabiting or which lately inhabited several oceanic islands, tenanted by no beast of prey, has been caused by disuse.

island
island


The ostrich indeed inhabits continents, and is exposed to danger from which it cannot escape by flight, but it can defend itself by kicking its enemies, as efficiently as many quadrupeds.

ostrich
ostrich


We may believe that the progenitor of the ostrich genus had habits like those of the bustard, and that, as the size and weight of its body were increased during successive generations, its legs were used more, and its wings less, until they became incapable of flight.

bustard
bustard
13 - Mutual Affinities of Organic Beings: Morphology: Embryology: Rudimentary Or 13-01 - CLASSIFICATION, groups subordinate to groups 10 From the first dawn of life, all organic beings are found to resemble each other in descending degrees, so that they can be classed in groups under groups.

This classification is evidently not arbitrary like the grouping of the stars in constellations.

The existence of groups would have been of simple signification, if one group had been exclusively fitted to inhabit the land, and another the water; one to feed on flesh, another on vegetable matter, and so on; but the case is widely different in nature; for it is notorious how commonly members of even the same subgroup have different habits.

In our second and fourth chapters, on Variation and on Natural Selection, I have attempted to show that it is the widely ranging, the much diffused and common, that is the dominant species belonging to the larger genera, which vary most.

The varieties, or incipient species, thus produced ultimately become converted, as I believe, into new and distinct species; and these, on the principle of inheritance, tend to produce other new and dominant species.

Consequently the groups which are now large, and which generally include many dominant species, tend to go on increasing indefinitely in size.

I further attempted to show that from the varying descendants of each species trying to occupy as many and as different places as possible in the economy of nature, there is a constant tendency in their characters to diverge.

This conclusion was supported by looking at the great diversity of the forms of life which, in any small area, come into the closest competition, and by looking to certain facts in naturalisation.

I attempted also to show that there is a constant tendency in the forms which are increasing in number and diverging in character, to supplant and exterminate the less divergent, the less improved, and preceding forms.

I request the reader to turn to the diagram illustrating the action, as formerly explained, of these several principles; and he will see that the inevitable result is that the modified descendants proceeding from one progenitor become broken up into groups subordinate to groups.

In the diagram each letter on the uppermost line may represent a genus including several species; and all the genera on this line form together one class, for all have descended from one ancient but unseen parent, and, consequently, have inherited something in common.

But the three genera on the left hand have, on this same principle, much in common, and form a sub-family, distinct from that including the next two genera on the right hand, which diverged from a common parent at the fifth stage of descent.

These five genera have also much, though less, in common; and they form a family distinct from that including the three genera still further to the right hand, which diverged at a still earlier period.

And all these genera, descended from (A), form an order distinct from the genera descended from (I).

So that we here have many species descended from a single progenitor grouped into genera; and the genera are included in, or subordinate to, sub-families, families, and orders, all united into one class.

Thus, the grand fact in natural history of the subordination of group under group, which, from its familiarity, does not always sufficiently strike us, is in my judgement fully explained.
Full Size
10 - On The Geological Succession of Organic Beings 10-04 - Groups of species follow the same general rules in their appearance and disappearance as do single species 10 Groups of species, that is, genera and families, follow the same general rules in their appearance and disappearance as do single species, changing more or less quickly, and in a greater or lesser degree.

A group does not reappear after it has once disappeared; or its existence, as long as it lasts, is continuous.

I am aware that there are some apparent exceptions to this rule, but the exceptions are surprisingly few, so few, that E. Forbes, Pictet, and Woodward (though all strongly opposed to such views as I maintain) admit its truth; and the rule strictly accords with my theory.

Edward Forbes
Edward Forbes


For as all the species of the same group have descended from some one species, it is clear that as long as any species of the group have appeared in the long succession of ages, so long must its members have continuously existed, in order to have generated either new and modified or the same old and unmodified forms.

Species of the genus Lingula, for instance, must have continuously existed by an unbroken succession of generations, from the lowest Silurian stratum to the present day.

lingula
lingula


We have seen in the last chapter that the species of a group sometimes falsely appear to have come in abruptly; and I have attempted to give an explanation of this fact, which if true would have been fatal to my views.

But such cases are certainly exceptional; the general rule being a gradual increase in number, till the group reaches its maximum, and then, sooner or later, it gradually decreases.

If the number of the species of a genus, or the number of the genera of a family, be represented by a vertical line of varying thickness, crossing the successive geological formations in which the species are found, the line will sometimes falsely appear to begin at its lower end, not in a sharp point, but abruptly; it then gradually thickens upwards, sometimes keeping for a space of equal thickness, and ultimately thins out in the upper beds, marking the decrease and final extinction of the species.

This gradual increase in number of the species of a group is strictly conformable with my theory; as the species of the same genus, and the genera of the same family, can increase only slowly and progressively; for the process of modification and the production of a number of allied forms must be slow and gradual, one species giving rise first to two or three varieties, these being slowly converted into species, which in their turn produce by equally slow steps other species, and so on, like the branching of a great tree from a single stem, till the group becomes large.
02 - Variations Under Nature 02-04 - Wide-ranging, much diffused, and common Species vary most 10 Guided by theoretical consideration, I thought that some interesting results might be obtained in regard to the nature and relations of the species which vary most, by tabulating all the varieties in several well-worked floras.

At first this seemed a simple task; but Mr. H. C. Watson, to whom I am much indebted for valuable advice and assistance on this subject, soon convinced me that there were many difficulties, as did subsequently Dr. Hooker, even in stronger terms.

Hewett Cottrell Watson
Hewett Cottrell Watson


I shall reserve for a future work the discussion of these difficulties, and the tables of the proportional numbers of the varying species.

Dr. Hooker permits me to add that after having carefully read my manuscript, and examined the tables, he thinks that the following statements are fairly well established.

Joseph Dalton Hooker
Joseph Dalton Hooker


The whole subject, however, treated as it necessarily here is with much brevity, is rather perplexing, and allusions cannot be avoided to the "struggle for existence," "divergence of character," and other questions, hereafter to be discussed.