M Database Inspector (cheetah)
Not logged in. Login


133 rows, page 25 of 34 (4/p)
1 10 19 20 21 22 23 24 25 26 27 28 29 30 31 34

Export to Excel select * from OriginOfSpecies where ordinal = '10' order by title limit 96, 4 (Page 25: Row)
subject
title Desending Order (top row is first)
ordinal
description
10 - On The Geological Succession of Organic Beings 10-04 - Groups of species follow the same general rules in their appearance and disappearance as do single species 10 Groups of species, that is, genera and families, follow the same general rules in their appearance and disappearance as do single species, changing more or less quickly, and in a greater or lesser degree.

A group does not reappear after it has once disappeared; or its existence, as long as it lasts, is continuous.

I am aware that there are some apparent exceptions to this rule, but the exceptions are surprisingly few, so few, that E. Forbes, Pictet, and Woodward (though all strongly opposed to such views as I maintain) admit its truth; and the rule strictly accords with my theory.

Edward Forbes
Edward Forbes


For as all the species of the same group have descended from some one species, it is clear that as long as any species of the group have appeared in the long succession of ages, so long must its members have continuously existed, in order to have generated either new and modified or the same old and unmodified forms.

Species of the genus Lingula, for instance, must have continuously existed by an unbroken succession of generations, from the lowest Silurian stratum to the present day.

lingula
lingula


We have seen in the last chapter that the species of a group sometimes falsely appear to have come in abruptly; and I have attempted to give an explanation of this fact, which if true would have been fatal to my views.

But such cases are certainly exceptional; the general rule being a gradual increase in number, till the group reaches its maximum, and then, sooner or later, it gradually decreases.

If the number of the species of a genus, or the number of the genera of a family, be represented by a vertical line of varying thickness, crossing the successive geological formations in which the species are found, the line will sometimes falsely appear to begin at its lower end, not in a sharp point, but abruptly; it then gradually thickens upwards, sometimes keeping for a space of equal thickness, and ultimately thins out in the upper beds, marking the decrease and final extinction of the species.

This gradual increase in number of the species of a group is strictly conformable with my theory; as the species of the same genus, and the genera of the same family, can increase only slowly and progressively; for the process of modification and the production of a number of allied forms must be slow and gradual, one species giving rise first to two or three varieties, these being slowly converted into species, which in their turn produce by equally slow steps other species, and so on, like the branching of a great tree from a single stem, till the group becomes large.
10 - On The Geological Succession of Organic Beings 10-05 - On Extinction 10 We have as yet spoken only incidentally of the disappearance of species and of groups of species.

On the theory of natural selection the extinction of old forms and the production of new and improved forms are intimately connected together.

The old notion of all the inhabitants of the earth having been swept away at successive periods by catastrophes, is very generally given up, even by those geologists, as Elie de Beaumont, Murchison, Barrande, &c., whose general views would naturally lead them to this conclusion.

Elie de Beaumont
Elie de Beaumont

Roderick Murchison
Roderick Murchison

Joachim Barrande
Joachim Barrande


On the contrary, we have every reason to believe, from the study of the tertiary formations, that species and groups of species gradually disappear, one after another, first from one spot, then from another, and finally from the world.

Both single species and whole groups of species last for very unequal periods; some groups, as we have seen, having endured from the earliest known dawn of life to the present day; some having disappeared before the close of the palaeozoic period.

No fixed law seems to determine the length of time during which any single species or any single genus endures.

There is reason to believe that the complete extinction of the species of a group is generally a slower process than their production: if the appearance and disappearance of a group of species be represented, as before, by a vertical line of varying thickness, the line is found to taper more gradually at its upper end, which marks the progress of extermination, than at its lower end, which marks the first appearance and increase in numbers of the species.

In some cases, however, the extermination of whole groups of beings, as of ammonites towards the close of the secondary period, has been wonderfully sudden.

The whole subject of the extinction of species has been involved in the most gratuitous mystery.

Some authors have even supposed that as the individual has a definite length of life, so have species a definite duration.

No one I think can have marvelled more at the extinction of species, than I have done.

When I found in La Plata the tooth of a horse embedded with the remains of Mastodon, Megatherium, Toxodon, and other extinct monsters, which all co-existed with still living shells at a very late geological period, I was filled with astonishment; for seeing that the horse, since its introduction by the Spaniards into South America, has run wild over the whole country and has increased in numbers at an unparalleled rate, I asked myself what could so recently have exterminated the former horse under conditions of life apparently so favourable.

La Plata
La Plata

horse
horse

mastodon
mastodon

megatherium
megatherium

toxodon
toxodon

Land Shell
Land Shell

South America
South America


But how utterly groundless was my astonishment! Professor Owen soon perceived that the tooth, though so like that of the existing horse, belonged to an extinct species.

Richard Owen
Richard Owen


Had this horse been still living, but in some degree rare, no naturalist would have felt the least surprise at its rarity; for rarity is the attribute of a vast number of species of all classes, in all countries.

If we ask ourselves why this or that species is rare, we answer that something is unfavourable in its conditions of life; but what that something is, we can hardly ever tell.

On the supposition of the fossil horse still existing as a rare species, we might have felt certain from the analogy of all other mammals, even of the slow-breeding elephant, and from the history of the naturalisation of the domestic horse in South America, that under more favourable conditions it would in a very few years have stocked the whole continent.

elephant
elephant


But we could not have told what the unfavourable conditions were which checked its increase, whether some one or several contingencies, and at what period of the horse's life, and in what degree, they severally acted.

If the conditions had gone on, however slowly, becoming less and less favourable, we assuredly should not have perceived the fact, yet the fossil horse would certainly have become rarer and rarer, and finally extinct; its place being seized on by some more successful competitor.

It is most difficult always to remember that the increase of every living being is constantly being checked by unperceived injurious agencies; and that these same unperceived agencies are amply sufficient to cause rarity, and finally extinction.

We see in many cases in the more recent tertiary formations, that rarity precedes extinction; and we know that this has been the progress of events with those animals which have been exterminated, either locally or wholly, through man's agency.

I may repeat what I published in 1845, namely, that to admit that species generally become rare before they become extinct to feel no surprise at the rarity of a species, and yet to marvel greatly when it ceases to exist, is much the same as to admit that sickness in the individual is the forerunner of death to feel no surprise at sickness, but when the sick man dies, to wonder and to suspect that he died by some unknown deed of violence.

Death
Death


The theory of natural selection is grounded on the belief that each new variety, and ultimately each new species, is produced and maintained by having some advantage over those with which it comes into competition; and the consequent extinction of less-favoured forms almost inevitably follows.

It is the same with our domestic productions: when a new and slightly improved variety has been raised, it at first supplants the less improved varieties in the same neighbourhood; when much improved it is transported far and near, like our short-horn cattle, and takes the place of other breeds in other countries.

cattle
cattle


Thus the appearance of new forms and the disappearance of old forms, both natural and artificial, are bound together.

In certain flourishing groups, the number of new specific forms which have been produced within a given time is probably greater than that of the old forms which have been exterminated; but we know that the number of species has not gone on indefinitely increasing, at least during the later geological periods, so that looking to later times we may believe that the production of new forms has caused the extinction of about the same number of old forms.

The competition will generally be most severe, as formerly explained and illustrated by examples, between the forms which are most like each other in all respects.

Hence the improved and modified descendants of a species will generally cause the extermination of the parent-species; and if many new forms have been developed from any one species, the nearest allies of that species, i.e. the species of the same genus, will be the most liable to extermination.

Thus, as I believe, a number of new species descended from one species, that is a new genus, comes to supplant an old genus, belonging to the same family.

But it must often have happened that a new species belonging to some one group will have seized on the place occupied by a species belonging to a distinct group, and thus caused its extermination; and if many allied forms be developed from the successful intruder, many will have to yield their places; and it will generally be allied forms, which will suffer from some inherited inferiority in common.

But whether it be species belonging to the same or to a distinct class, which yield their places to other species which have been modified and improved, a few of the sufferers may often long be preserved, from being fitted to some peculiar line of life, or from inhabiting some distant and isolated station, where they have escaped severe competition.

For instance, a single species of Trigonia, a great genus of shells in the secondary formations, survives in the Australian seas; and a few members of the great and almost extinct group of Ganoid fishes still inhabit our fresh waters.

trigonia
trigonia


Therefore the utter extinction of a group is generally, as we have seen, a slower process than its production.

With respect to the apparently sudden extermination of whole families or orders, as of Trilobites at the close of the palaeozoic period and of Ammonites at the close of the secondary period, we must remember what has been already said on the probable wide intervals of time between our consecutive formations; and in these intervals there may have been much slow extermination.

trilobite
trilobite

ammonite
ammonite


Moreover, when by sudden immigration or by unusually rapid development, many species of a new group have taken possession of a new area, they will have exterminated in a correspondingly rapid manner many of the old inhabitants; and the forms which thus yield their places will commonly be allied, for they will partake of some inferiority in common.

Thus, as it seems to me, the manner in which single species and whole groups of species become extinct, accords well with the theory of natural selection.

We need not marvel at extinction; if we must marvel, let it be at our presumption in imagining for a moment that we understand the many complex contingencies, on which the existence of each species depends.

If we forget for an instant, that each species tends to increase inordinately, and that some check is always in action, yet seldom perceived by us, the whole economy of nature will be utterly obscured.

Whenever we can precisely say why this species is more abundant in individuals than that; why this species and not another can be naturalised in a given country; then, and not till then, we may justly feel surprise why we cannot account for the extinction of this particular species or group of species.
10 - On The Geological Succession of Organic Beings 10-06 - On simultaneous changes in the forms of life throughout the world 10 Scarcely any palaeontological discovery is more striking than the fact, that the forms of life change almost simultaneously throughout the world.

Thus our European Chalk formation can be recognised in many distant parts of the world, under the most different climates, where not a fragment of the mineral chalk itself can be found; namely, in North America, in equatorial South America, in Tierra del Fuego, at the Cape of Good Hope, and in the peninsula of India.

The Chalk Formation Needles
The Chalk Formation Needles

North America
North America

South America
South America

Tierra del Fuego
Tierra del Fuego

Cape of Good Hope
Cape of Good Hope

India
India



For at these distant points, the organic remains in certain beds present an unmistakeable degree of resemblance to those of the Chalk.

It is not that the same species are met with; for in some cases not one species is identically the same, but they belong to the same families, genera, and sections of genera, and sometimes are similarly characterised in such trifling points as mere superficial sculpture.

Moreover other forms, which are not found in the Chalk of Europe, but which occur in the formations either above or below, are similarly absent at these distant points of the world.

In the several successive palaeozoic formations of Russia, Western Europe and North America, a similar parallelism in the forms of life has been observed by several authors: so it is, according to Lyell, with the several European and North American tertiary deposits.

Russia
Russia

europe
europe

North America
North America

Sir Charles Lyell
Sir Charles Lyell


Even if the few fossil species which are common to the Old and New Worlds be kept wholly out of view, the general parallelism in the successive forms of life, in the stages of the widely separated palaeozoic and tertiary periods, would still be manifest, and the several formations could be easily correlated.

These observations, however, relate to the marine inhabitants of distant parts of the world: we have not sufficient data to judge whether the productions of the land and of fresh water change at distant points in the same parallel manner.

We may doubt whether they have thus changed: if the Megatherium, Mylodon, Macrauchenia, and Toxodon had been brought to Europe from La Plata, without any information in regard to their geological position, no one would have suspected that they had coexisted with still living sea-shells; but as these anomalous monsters coexisted with the Mastodon and Horse, it might at least have been inferred that they had lived during one of the latter tertiary stages.

megatherium
megatherium

mylodon
mylodon

macrauchenia
macrauchenia

toxodon
toxodon

europe
europe

La Plata
La Plata

Sea Shell
Sea Shell

mastodon
mastodon

europe
europe

horse
horse


When the marine forms of life are spoken of as having changed simultaneously throughout the world, it must not be supposed that this expression relates to the same thousandth or hundred-thousandth year, or even that it has a very strict geological sense; for if all the marine animals which live at the present day in Europe, and all those that lived in Europe during the pleistocene period (an enormously remote period as measured by years, including the whole glacial epoch), were to be compared with those now living in South America or in Australia, the most skilful naturalist would hardly be able to say whether the existing or the pleistocene inhabitants of Europe resembled most closely those of the southern hemisphere.

europe
europe

South America
South America

Australia
Australia


So, again, several highly competent observers believe that the existing productions of the United States are more closely related to those which lived in Europe during certain later tertiary stages, than to those which now live here; and if this be so, it is evident that fossiliferous beds deposited at the present day on the shores of North America would hereafter be liable to be classed with somewhat older European beds.

United States
United States

europe
europe

North America
North America


Nevertheless, looking to a remotely future epoch, there can, I think, be little doubt that all the more modern marine formations, namely, the upper pliocene, the pleistocene and strictly modern beds, of Europe, North and South America, and Australia, from containing fossil remains in some degree allied, and from not including those forms which are only found in the older underlying deposits, would be correctly ranked as simultaneous in a geological sense.

The fact of the forms of life changing simultaneously, in the above large sense, at distant parts of the world, has greatly struck those admirable observers, MM. de Verneuil and d'Archiac.

Adolphe dArchiac
Adolphe dArchiac


After referring to the parallelism of the palaeozoic forms of life in various parts of Europe, they add, `If struck by this strange sequence, we turn our attention to North America, and there discover a series of analogous phenomena, it will appear certain that all these modifications of species, their extinction, and the introduction of new ones, cannot be owing to mere changes in marine currents or other causes more or less local and temporary, but depend on general laws which govern the whole animal kingdom.' M. Barrande has made forcible remarks to precisely the same effect.

Joachim Barrande
Joachim Barrande


It is, indeed, quite futile to look to changes of currents, climate, or other physical conditions, as the cause of these great mutations in the forms of life throughout the world, under the most different climates.

We must, as Barrande has remarked, look to some special law.

We shall see this more clearly when we treat of the present distribution of organic beings, and find how slight is the relation between the physical conditions of various countries, and the nature of their inhabitants.

This great fact of the parallel succession of the forms of life throughout the world, is explicable on the theory of natural selection.

New species are formed by new varieties arising, which have some advantage over older forms; and those forms, which are already dominant, or have some advantage over the other forms in their own country, would naturally oftenest give rise to new varieties or incipient species; for these latter must be victorious in a still higher degree in order to be preserved and to survive.

We have distinct evidence on this head, in the plants which are dominant, that is, which are commonest in their own homes, and are most widely diffused, having produced the greatest number of new varieties.

It is also natural that the dominant, varying, and far-spreading species, which already have invaded to a certain extent the territories of other species, should be those which would have the best chance of spreading still further, and of giving rise in new countries to new varieties and species.

The process of diffusion may often be very slow, being dependent on climatal and geographical changes, or on strange accidents, but in the long run the dominant forms will generally succeed in spreading.

The diffusion would, it is probable, be slower with the terrestrial inhabitants of distinct continents than with the marine inhabitants of the continuous sea.

We might therefore expect to find, as we apparently do find, a less strict degree of parallel succession in the productions of the land than of the sea.

Dominant species spreading from any region might encounter still more dominant species, and then their triumphant course, or even their existence, would cease.

We know not at all precisely what are all the conditions most favourable for the multiplication of new and dominant species; but we can, I think, clearly see that a number of individuals, from giving a better chance of the appearance of favourable variations, and that severe competition with many already existing forms, would be highly favourable, as would be the power of spreading into new territories.

A certain amount of isolation, recurring at long intervals of time, would probably be also favourable, as before explained.

One quarter of the world may have been most favourable for the production of new and dominant species on the land, and another for those in the waters of the sea.

If two great regions had been for a long period favourably circumstanced in an equal degree, whenever their inhabitants met, the battle would be prolonged and severe; and some from one birthplace and some from the other might be victorious.

But in the course of time, the forms dominant in the highest degree, wherever produced, would tend everywhere to prevail.

As they prevailed, they would cause the extinction of other and inferior forms; and as these inferior forms would be allied in groups by inheritance, whole groups would tend slowly to disappear; though here and there a single member might long be enabled to survive.

Thus, as it seems to me, the parallel, and, taken in a large sense, simultaneous, succession of the same forms of life throughout the world, accords well with the principle of new species having been formed by dominant species spreading widely and varying; the new species thus produced being themselves dominant owing to inheritance, and to having already had some advantage over their parents or over other species; these again spreading, varying, and producing new species.

The forms which are beaten and which yield their places to the new and victorious forms, will generally be allied in groups, from inheriting some inferiority in common; and therefore as new and improved groups spread throughout the world, old groups will disappear from the world; and the succession of forms in both ways will everywhere tend to correspond.

There is one other remark connected with this subject worth making.

I have given my reasons for believing that all our greater fossiliferous formations were deposited during periods of subsidence; and that blank intervals of vast duration occurred during the periods when the bed of the sea was either stationary or rising, and likewise when sediment was not thrown down quickly enough to embed and preserve organic remains.

During these long and blank intervals I suppose that the inhabitants of each region underwent a considerable amount of modification and extinction, and that there was much migration from other parts of the world.

As we have reason to believe that large areas are affected by the same movement, it is probable that strictly contemporaneous formations have often been accumulated over very wide spaces in the same quarter of the world; but we are far from having any right to conclude that this has invariably been the case, and that large areas have invariably been affected by the same movements.

When two formations have been deposited in two regions during nearly, but not exactly the same period, we should find in both, from the causes explained in the foregoing paragraphs, the same general succession in the forms of life; but the species would not exactly correspond; for there will have been a little more time in the one region than in the other for modification, extinction, and immigration.

I suspect that cases of this nature have occurred in Europe.

Mr. Prestwich, in his admirable Memoirs on the eocene deposits of England and France, is able to draw a close general parallelism between the successive stages in the two countries; but when he compares certain stages in England with those in France, although he finds in both a curious accordance in the numbers of the species belonging to the same genera, yet the species themselves differ in a manner very difficult to account for, considering the proximity of the two areas, unless, indeed, it be assumed that an isthmus separated two seas inhabited by distinct, but contemporaneous, faunas.

England
England

France
France


Lyell has made similar observations on some of the later tertiary formations.

Sir Charles Lyell
Sir Charles Lyell


Barrande, also, shows that there is a striking general parallelism in the successive Silurian deposits of Bohemia and Scandinavia; nevertheless he finds a surprising amount of difference in the species.

Joachim Barrande
Joachim Barrande

Bohemia
Bohemia

Scandinavia
Scandinavia


If the several formations in these regions have not been deposited during the same exact periods, a formation in one region often corresponding with a blank interval in the other, and if in both regions the species have gone on slowly changing during the accumulation of the several formations and during the long intervals of time between them; in this case, the several formations in the two regions could be arranged in the same order, in accordance with the general succession of the form of life, and the order would falsely appear to be strictly parallel; nevertheless the species would not all be the same in the apparently corresponding stages in the two regions.
10 - On The Geological Succession of Organic Beings 10-07 - On the affinities of extinct species to each other and to living species 10 Let us now look to the mutual affinities of extinct and living species.

They all fall into one grand natural system; and this fact is at once explained on the principle of descent.

The more ancient any form is, the more, as a general rule, it differs from living forms.

But, as Buckland long ago remarked, all fossils can be classed either in still existing groups, or between them.

William Buckland
William Buckland


That the extinct forms of life help to fill up the wide intervals between existing genera, families, and orders, cannot be disputed.

For if we confine our attention either to the living or to the extinct alone, the series is far less perfect than if we combine both into one general system.

With respect to the Vertebrata, whole pages could be filled with striking illustrations from our great palaeontologist, Owen, showing how extinct animals fall in between existing groups.

Richard Owen
Richard Owen


Cuvier ranked the Ruminants and Pachyderms, as the two most distinct orders of mammals; but Owen has discovered so many fossil links, that he has had to alter the whole classification of these two orders; and has placed certain pachyderms in the same sub-order with ruminants: for example, he dissolves by fine gradations the apparently wide difference between the pig and the camel.

pig
pig

camel
camel


In regard to the Invertebrata, Barrande, and a higher authority could not be named, asserts that he is every day taught that palaeozoic animals, though belonging to the same orders, families, or genera with those living at the present day, were not at this early epoch limited in such distinct groups as they now are.

Some writers have objected to any extinct species or group of species being considered as intermediate between living species or groups.

If by this term it is meant that an extinct form is directly intermediate in all its characters between two living forms, the objection is probably valid.

But I apprehend that in a perfectly natural classification many fossil species would have to stand between living species, and some extinct genera between living genera, even between genera belonging to distinct families.

The most common case, especially with respect to very distinct groups, such as fish and reptiles, seems to be, that supposing them to be distinguished at the present day from each other by a dozen characters, the ancient members of the same two groups would be distinguished by a somewhat lesser number of characters, so that the two groups, though formerly quite distinct, at that period made some small approach to each other.

fish
fish

reptile
reptile


It is a common belief that the more ancient a form is, by so much the more it tends to connect by some of its characters groups now widely separated from each other.

This remark no doubt must be restricted to those groups which have undergone much change in the course of geological ages; and it would be difficult to prove the truth of the proposition, for every now and then even a living animal, as the Lepidosiren, is discovered having affinities directed towards very distinct groups.

lepidosiren
lepidosiren


Yet if we compare the older Reptiles and Batrachians, the older Fish, the older Cephalopods, and the eocene Mammals, with the more recent members of the same classes, we must admit that there is some truth in the remark.

cephalopod
cephalopod


Let us see how far these several facts and inferences accord with the theory of descent with modification.

As the subject is somewhat complex, I must request the reader to turn to the diagram in the fourth chapter.
Full Size

We may suppose that the numbered letters represent genera, and the dotted lines diverging from them the species in each genus.

The diagram is much too simple, too few genera and too few species being given, but this is unimportant for us.

The horizontal lines may represent successive geological formations, and all the forms beneath the uppermost line may be considered as extinct.

The three existing genera, a14, q14, p14, will form a small family; b14 and f14 a closely allied family or sub-family; and o14, e14, m14, a third family.

These three families, together with the many extinct genera on the several lines of descent diverging from the parent-form A, will form an order; for all will have inherited something in common from their ancient and common progenitor.

On the principle of the continued tendency to divergence of character, which was formerly illustrated by this diagram, the more recent any form is, the more it will generally differ from its ancient progenitor.

Hence we can understand the rule that the most ancient fossils differ most from existing forms.

We must not, however, assume that divergence of character is a necessary contingency; it depends solely on the descendants from a species being thus enabled to seize on many and different places in the economy of nature.

Therefore it is quite possible, as we have seen in the case of some Silurian forms, that a species might go on being slightly modified in relation to its slightly altered conditions of life, and yet retain throughout a vast period the same general characteristics.

This is represented in the diagram by the letter F14.

All the many forms, extinct and recent, descended from A, make, as before remarked, one order; and this order, from the continued effects of extinction and divergence of character, has become divided into several sub-families and families, some of which are supposed to have perished at different periods, and some to have endured to the present day.

By looking at the diagram we can see that if many of the extinct forms, supposed to be embedded in the successive formations, were discovered at several points low down in the series, the three existing families on the uppermost line would be rendered less distinct from each other.

If, for instance, the genera a1, a5, a10, m3, m6, m9 were disinterred, these three families would be so closely linked together that they probably would have to be united into one great family, in nearly the same manner as has occurred with ruminants and pachyderms.

Yet he who objected to call the extinct genera, which thus linked the living genera of three families together, intermediate in character, would be justified, as they are intermediate, not directly, but only by a long and circuitous course through many widely different forms.

If many extinct forms were to be discovered above one of the middle horizontal lines or geological formations for instance, above No. VI. but none from beneath this line, then only the two families on the left hand (namely, a14, &c., and b14, &c.) would have to be united into one family; and the two other families (namely, a14 to f14 now including five genera, and o14 to m14) would yet remain distinct.

These two families, however, would be less distinct from each other than they were before the discovery of the fossils.

If, for instance, we suppose the existing genera of the two families to differ from each other by a dozen characters, in this case the genera, at the early period marked VI., would differ by a lesser number of characters; for at this early stage of descent they have not diverged in character from the common progenitor of the order, nearly so much as they subsequently diverged.

Thus it comes that ancient and extinct genera are often in some slight degree intermediate in character between their modified descendants, or between their collateral relations.

In nature the case will be far more complicated than is represented in the diagram; for the groups will have been more numerous, they will have endured for extremely unequal lengths of time, and will have been modified in various degrees.

As we possess only the last volume of the geological record, and that in a very broken condition, we have no right to expect, except in very rare cases, to fill up wide intervals in the natural system, and thus unite distinct families or orders.

All that we have a right to expect, is that those groups, which have within known geological periods undergone much modification, should in the older formations make some slight approach to each other; so that the older members should differ less from each other in some of their characters than do the existing members of the same groups; and this by the concurrent evidence of our best palaeontologists seems frequently to be the case.

Thus, on the theory of descent with modification, the main facts with respect to the mutual affinities of the extinct forms of life to each other and to living forms, seem to me explained in a satisfactory manner.

And they are wholly inexplicable on any other view.

On this same theory, it is evident that the fauna of any great period in the earth's history will be intermediate in general character between that which preceded and that which succeeded it.

Thus, the species which lived at the sixth great stage of descent in the diagram are the modified offspring of those which lived at the fifth stage, and are the parents of those which became still more modified at the seventh stage; hence they could hardly fail to be nearly intermediate in character between the forms of life above and below.

We must, however, allow for the entire extinction of some preceding forms, and for the coming in of quite new forms by immigration, and for a large amount of modification, during the long and blank intervals between the successive formations.

Subject to these allowances, the fauna of each geological period undoubtedly is intermediate in character, between the preceding and succeeding faunas.

I need give only one instance, namely, the manner in which the fossils of the Devonian system, when this system was first discovered, were at once recognised by palaeontologists as intermediate in character between those of the overlying carboniferous, and underlying Silurian system.

But each fauna is not necessarily exactly intermediate, as unequal intervals of time have elapsed between consecutive formations.

It is no real objection to the truth of the statement, that the fauna of each period as a whole is nearly intermediate in character between the preceding and succeeding faunas, that certain genera offer exceptions to the rule.

For instance, mastodons and elephants, when arranged by Dr Falconer in two series, first according to their mutual affinities and then according to their periods of existence, do not accord in arrangement.

mastodon
mastodon

elephant
elephant


The species extreme in character are not the oldest, or the most recent; nor are those which are intermediate in character, intermediate in age.

But supposing for an instant, in this and other such cases, that the record of the first appearance and disappearance of the species was perfect, we have no reason to believe that forms successively produced necessarily endure for corresponding lengths of time: a very ancient form might occasionally last much longer than a form elsewhere subsequently produced, especially in the case of terrestrial productions inhabiting separated districts.

To compare small things with great: if the principal living and extinct races of the domestic pigeon were arranged as well as they could be in serial affinity, this arrangement would not closely accord with the order in time of their production, and still less with the order of their disappearance; for the parent rock-pigeon now lives; and many varieties between the rock-pigeon and the carrier have become extinct; and carriers which are extreme in the important character of length of beak originated earlier than short-beaked tumblers, which are at the opposite end of the series in this same respect.

Rock Pigeon
Rock Pigeon

English Carrier Pigeon
English Carrier Pigeon

Tumbler Pigeon
Tumbler Pigeon


Closely connected with the statement, that the organic remains from an intermediate formation are in some degree intermediate in character, is the fact, insisted on by all palaeontologists, that fossils from two consecutive formations are far more closely related to each other, than are the fossils from two remote formations.

Pictet gives as a well-known instance, the general resemblance of the organic remains from the several stages of the chalk formation, though the species are distinct in each stage.

This fact alone, from its generality, seems to have shaken Professor Pictet in his firm belief in the immutability of species.

He who is acquainted with the distribution of existing species over the globe, will not attempt to account for the close resemblance of the distinct species in closely consecutive formations, by the physical conditions of the ancient areas having remained nearly the same.

Let it be remembered that the forms of life, at least those inhabiting the sea, have changed almost simultaneously throughout the world, and therefore under the most different climates and conditions.

Consider the prodigious vicissitudes of climate during the pleistocene period, which includes the whole glacial period, and note how little the specific forms of the inhabitants of the sea have been affected.

On the theory of descent, the full meaning of the fact of fossil remains from closely consecutive formations, though ranked as distinct species, being closely related, is obvious.

As the accumulation of each formation has often been interrupted, and as long blank intervals have intervened between successive formations, we ought not to expect to find, as I attempted to show in the last chapter, in any one or two formations all the intermediate varieties between the species which appeared at the commencement and close of these periods; but we ought to find after intervals, very long as measured by years, but only moderately long as measured geologically, closely allied forms, or, as they have been called by some authors, representative species; and these we assuredly do find.

We find, in short, such evidence of the slow and scarcely sensible mutation of specific forms, as we have a just right to expect to find.