M Database Inspector (cheetah)
Not logged in. Login


133 rows, page 12 of 34 (4/p)
1 6 7 8 9 10 11 12 13 14 15 16 17 18 20 30 34

Export to Excel select * from OriginOfSpecies where ordinal = '10' order by subject, title, ordinal limit 44, 4 (Page 12: Row)
subject
title
ordinal
description
04 - Natural Selection 04-13 - Convergence of Character 10 Mr. H. C. Watson thinks that I have overrated the importance of divergence of character (in which, however, he apparently believes) and that convergence, as it may be called, has likewise played a part. If two species, belonging to two distinct though allied genera, had both produced a large number of new and divergent forms, it is conceivable that these might approach each other so closely that they would have all to be classed under the same genus; and thus the descendants of two distinct genera would converge into one.
04 - Natural Selection 04-14 - Summary of Chapter 10 If under changing conditions of life organic beings present individual differences in almost every part of their structure, and this cannot be disputed; if there be, owing to their geometrical rate of increase, a severe struggle for life at some age, season, or year, and this certainly cannot be disputed; then, considering the infinite complexity of the relations of all organic beings to each other and to their conditions of life, causing an infinite diversity in structure, constitution, and habits, to be advantageous to them, it would be a most extraordinary fact if no variations had ever occurred useful to each being's own welfare, in the same manner as so many variations have occurred useful to man.

But if variations useful to any organic being ever do occur, assuredly individuals thus characterised will have the best chance of being preserved in the struggle for life; and from the strong principle of inheritance, these will tend to produce offspring similarly characterised.

This principle of preservation, or the survival of the fittest, I have called Natural Selection. It leads to the improvement of each creature in relation to its organic and inorganic conditions of life, and consequently, in most cases, to what must be regarded as an advance in organisation.

Nevertheless, low and simple forms will long endure if well fitted for their simple conditions of life. Natural selection, on the principle of qualities being inherited at corresponding ages, can modify the egg, seed, or young, as easily as the adult.

Amongst many animals, sexual selection will have given its aid to ordinary selection, by assuring to the most vigorous and best adapted males the greatest number of offspring.

Sexual selection will also give characters useful to the males alone, in their struggles or rivalry with other males; and these characters will be transmitted to one sex or to both sexes, according to the form of inheritance which prevails.
05 - Laws of Variation 05-01 - Effects of External Conditions 10 I HAVE hitherto sometimes spoken as if the variations- so common and multiform with organic beings under domestication, and in a lesser degree with those under nature- were due to chance.

This, of course, is a wholly incorrect expression, but it serves to acknowledge plainly our ignorance of the cause of each particular variation.

Some authors believe it to be as much the function of the reproductive system to produce individual differences, or slight deviations of structure, as to make the child like its parents.

But the fact of variations and monstrosities occurring much more frequently under domestication than under nature, and the greater variability of species having wider ranges than of those with restricted ranges, lead to the conclusion that variability is generally related to the conditions of life to which each species has been exposed during several successive generations.

In the first chapter I attempted to show that changed conditions act in two ways, directly on the whole organisation or on certain parts alone, and indirectly through the reproductive system.

In all cases there are two factors, the nature of the organism, which is much the most important of the two, and the nature of the conditions.

The direct action of changed conditions leads to definite or indefinite results. In the latter case the organisation seems to become plastic, and we have much fluctuating variability.

In the former case the nature of the organism is such that it yields readily, when subjected to certain conditions, and all, or nearly all the individuals become modified in the same way.

It is very difficult to decide how far changed conditions, such as of climate, food, &c., have acted in a definite manner.

There is reason to believe that in the course of time the effects have been greater than can be proved by clear evidence.

But we may safely conclude that the innumerable complex co-adaptations of structure, which we see throughout nature between various organic beings, cannot be attributed simply to such action.

In the following cases the conditions seem to have produced some slight definite effect: E. Forbes asserts that shells at their southern limit, and when living in shallow water, are more brightly coloured than those of the same species from further north or from a greater depth; but this certainly does not always hold good.

Sea Shell
Sea Shell
05 - Laws of Variation 05-02 - Use and Disuse of Parts, combined with Natural Selection, Organs of Flight and Vision 10 From the facts alluded to in the first chapter, I think there can be no doubt that use in our domestic animals has strengthened and enlarged certain parts, and disuse diminished them; and that such modifications are inherited.

Under free nature, we have no standard of comparison, by which to judge of the effects of long-continued use or disuse, for we know not the parent-forms; but many animals possess structures which can be best explained by the effects of disuse.

As Professor Owen has remarked, there is no greater anomaly in nature than a bird that cannot fly; yet there are several in this state.

fowl
fowl


The logger-headed duck of South America can only flap along the surface of the water, and has its wings in nearly the same condition as the domestic Aylesbury duck: it is a remarkable fact that the young birds, according to Mr. Cunningham, can fly, while the adults have lost this power.

ducks
ducks

South America
South America


As the larger ground-feeding birds seldom take flight except to escape danger, it is probable that the nearly wingless condition of several birds, now inhabiting or which lately inhabited several oceanic islands, tenanted by no beast of prey, has been caused by disuse.

island
island


The ostrich indeed inhabits continents, and is exposed to danger from which it cannot escape by flight, but it can defend itself by kicking its enemies, as efficiently as many quadrupeds.

ostrich
ostrich


We may believe that the progenitor of the ostrich genus had habits like those of the bustard, and that, as the size and weight of its body were increased during successive generations, its legs were used more, and its wings less, until they became incapable of flight.

bustard
bustard