M Database Inspector (cheetah)
Not logged in. Login

OriginOfSpecies - 475 Rows
Column Type #Values Column Stats
id int(11) 475 Column Stats
subject varchar(80) 14 Column Stats
title varchar(250) 139 Column Stats
ordinal int(11) 30 Column Stats
description text 474 Column Stats

475 rows, page 105 of 119 (4/p)
1 50 60 70 80 90 99 100 101 102 103 104 105 106 107 108 109 110 111 119

Export to Excel select * from OriginOfSpecies order by subject, title, ordinal limit 416, 4 (Page 105: Row)
subject
title
ordinal
description
13 - Mutual Affinities of Organic Beings: Morphology: Embryology: Rudimentary Or 13-03 - Rules and difficulties in classification, explained on the theory of descent with modification 120 Full Size

We will suppose the letters A to L to represent allied genera, which lived during the Silurian epoch, and these have descended from a species which existed at an unknown anterior period.

Species of three of these genera (A, F, and I) have transmitted modified descendants to the present day, represented by the fifteen genera (a14 to z14) on the uppermost horizontal line.

Now all these modified descendants from a single species, are represented as related in blood or descent to the same degree; they may metaphorically be called cousins to the same millionth degree; yet they differ widely and in different degrees from each other.

The forms descended from A, now broken up into two or three families, constitute a distinct order from those descended from I, also broken up into two families.

Nor can the existing species, descended from A, be ranked in the same genus with the parent A; or those from I, with the parent I.

But the existing genus F14 may be supposed to have been but slightly modified; and it will then rank with the parent-genus F; just as some few still living organic beings belong to Silurian genera.

So that the amount or value of the differences between organic beings all related to each other in the same degree in blood, has come to be widely different.

Nevertheless their genealogical arrangement remains strictly true, not only at the present time, but at each successive period of descent.

All the modified descendants from A will have inherited something in common from their common parent, as will all the descendants from I; so will it be with each subordinate branch of descendants, at each successive period.

If, however, we choose to suppose that any of the descendants of A or of I have been so much modified as to have more or less completely lost traces of their parentage, in this case, their places in a natural classification will have been more or less completely lost, as sometimes seems to have occurred with existing organisms.

All the descendants of the genus F, along its whole line of descent, are supposed to have been but little modified, and they yet form a single genus.

But this genus, though much isolated, will still occupy its proper intermediate position; for F originally was intermediate in character between A and I, and the several genera descended from these two genera will have inherited to a certain extent their characters.
13 - Mutual Affinities of Organic Beings: Morphology: Embryology: Rudimentary Or 13-03 - Rules and difficulties in classification, explained on the theory of descent with modification 130 This natural arrangement is shown, as far as is possible on paper, in the diagram, but in much too simple a manner.

If a branching diagram had not been used, and only the names of the groups had been written in a linear series, it would have been still less possible to have given a natural arrangement; and it is notoriously not possible to represent in a series, on a flat surface, the affinities which we discover in nature amongst the beings of the same group.

Thus, on the view which I hold, the natural system is genealogical in its arrangement, like a pedigree; but the degrees of modification which the different groups have undergone, have to be expressed by ranking them under different so-called genera, sub-families, families, sections, orders, and classes.

It may be worth while to illustrate this view of classification, by taking the case of languages.

If we possessed a perfect pedigree of mankind, a genealogical arrangement of the races of man would afford the best classification of the various languages now spoken throughout the world; and if all extinct languages, and all intermediate and slowly changing dialects, had to be included, such an arrangement would, I think, be the only possible one.

Yet it might be that some very ancient language had altered little, and had given rise to few new languages, whilst others (owing to the spreading and subsequent isolation and states of civilisation of the several races, descended from a common race) had altered much, and had given rise to many new languages and dialects.

The various degrees of difference in the languages from the same stock, would have to be expressed by groups subordinate to groups; but the proper or even only possible arrangement would still be genealogical; and this would be strictly natural, as it would connect together all languages, extinct and modern, by the closest affinities, and would give the filiation and origin of each tongue.
13 - Mutual Affinities of Organic Beings: Morphology: Embryology: Rudimentary Or 13-04 - Classification of varieties 10 In confirmation of this view, let us glance at the classification of varieties, which are believed or known to have descended from one species.

These are grouped under species, with sub-varieties under varieties; and with our domestic productions, several other grades of difference are requisite, as we have seen with pigeons.

The origin of the existence of groups subordinate to groups, is the same with varieties as with species, namely, closeness of descent with various degrees of modification.

Nearly the same rules are followed in classifying varieties, as with species.

Authors have insisted on the necessity of classing varieties on a natural instead of an artificial system; we are cautioned, for instance, not to class two varieties of the pine-apple together, merely because their fruit, though the most important part, happens to be nearly identical; no one puts the swedish and common turnips together, though the esculent and thickened stems are so similar.

pineapple
pineapple

turnip
turnip


Whatever part is found to be most constant, is used in classing varieties: thus the great agriculturist Marshall says the horns are very useful for this purpose with cattle, because they are less variable than the shape or colour of the body, &c.; whereas with sheep the horns are much less serviceable, because less constant.

cattle
cattle

sheep
sheep


In classing varieties, I apprehend if we had a real pedigree, a genealogical classification would be universally preferred; and it has been attempted by some authors.

For we might feel sure, whether there had been more or less modification, the principle of inheritance would keep the forms together which were allied in the greatest number of points.

In tumbler pigeons, though some sub-varieties differ from the others in the important character of having a longer beak, yet all are kept together from having the common habit of tumbling; but the short-faced breed has nearly or quite lost this habit; nevertheless, without any reasoning or thinking on the subject, these tumblers are kept in the same group, because allied in blood and alike in some other respects.

Tumbler Pigeon
Tumbler Pigeon

Short Faced Tumbler Pigeon
Short Faced Tumbler Pigeon


If it could be proved that the Hottentot had descended from the Negro, I think he would be classed under the Negro group, however much he might differ in colour and other important characters from negroes.
13 - Mutual Affinities of Organic Beings: Morphology: Embryology: Rudimentary Or 13-05 - Descent always used in classification 10 With species in a state of nature, every naturalist has in fact brought descent into his classification; for he includes in his lowest grade, or that of a species, the two sexes; and how enormously these sometimes differ in the most important characters, is known to every naturalist: scarcely a single fact can be predicated in common of the males and hermaphrodites of certain cirripedes, when adult, and yet no one dreams of separating them.

cirripede
cirripede


The naturalist includes as one species the several larval stages of the same individual, however much they may differ from each other and from the adult; as he likewise includes the so-called alternate generations of Steenstrup, which can only in a technical sense be considered as the same individual.

Japetus Steenstrup
Japetus Steenstrup


He includes monsters; he includes varieties, not solely because they closely resemble the parent-form, but because they are descended from it.

He who believes that the cowslip is descended from the primrose, or conversely, ranks them together as a single species, and gives a single definition.

cowslip
cowslip

primrose
primrose


As soon as three Orchidean forms (Monochanthus, Myanthus, and Catasetum), which had previously been ranked as three distinct genera, were known to be sometimes produced on the same spike, they were immediately included as a single species.

orchid
orchid