M Database Inspector (cheetah)
Not logged in. Login


34 rows, page 5 of 9 (4/p)
1 2 3 4 5 6 7 8 9

Export to Excel select * from OriginOfSpecies where subject = '13 - Mutual Affinities of Organic Beings: Morphology: Embryology: Rudimentary Or' order by ordinal limit 16, 4 (Page 5: Row)
subject
title
ordinal Desending Order (top row is first)
description
13 - Mutual Affinities of Organic Beings: Morphology: Embryology: Rudimentary Or 13-05 - Descent always used in classification 20 But it may be asked, what ought we to do, if it could be proved that one species of kangaroo had been produced, by a long course of modification, from a bear?

kangaroo
kangaroo

bear
bear


Ought we to rank this one species with bears, and what should we do with the other species?

The supposition is of course preposterous; and I might answer by the argumentum ad hominem, and ask what should be done if a perfect kangaroo were seen to come out of the womb of a bear?

According to all analogy, it would be ranked with bears; but then assuredly all the other species of the kangaroo family would have to be classed under the bear genus.

The whole case is preposterous; for where there has been close descent in common, there will certainly be close resemblance or affinity.
13 - Mutual Affinities of Organic Beings: Morphology: Embryology: Rudimentary Or 13-08 - Extinction separates and defines groups 30 Extinction has only separated groups: it has by no means made them; for if every form which has ever lived on this earth were suddenly to reappear, though it would be quite impossible to give definitions by which each group could be distinguished from other groups, as all would blend together by steps as fine as those between the finest existing varieties, nevertheless a natural classification, or at least a natural arrangement, would be possible.

We shall see this by turning to the diagram: the letters, A to L, may represent eleven Silurian genera, some of which have produced large groups of modified descendants.

Full Size

Every intermediate link between these eleven genera and their primordial parent, and every intermediate link in each branch and sub-branch of their descendants, may be supposed to be still alive; and the links to be as fine as those between the finest varieties.

In this case it would be quite impossible to give any definition by which the several members of the several groups could be distinguished from their more immediate parents; or these parents from their ancient and unknown progenitor.

Yet the natural arrangement in the diagram would still hold good; and, on the principle of inheritance, all the forms descended from A, or from I, would have something in common.

In a tree we can specify this or that branch, though at the actual fork the two unite and blend together.

We could not, as I have said, define the several groups; but we could pick out types, or forms, representing most of the characters of each group, whether large or small, and thus give a general idea of the value of the differences between them.

This is what we should be driven to, if we were ever to succeed in collecting all the forms in any class which have lived throughout all time and space.
13 - Mutual Affinities of Organic Beings: Morphology: Embryology: Rudimentary Or 13-03 - Rules and difficulties in classification, explained on the theory of descent with modification 30 Perhaps from this cause it has partly arisen, that almost all naturalists lay the greatest stress on resemblances in organs of high vital or physiological importance.

No doubt this view of the classificatory importance of organs which are important is generally, but by no means always, true.

But their importance for classification, I believe, depends on their greater constancy throughout large groups of species; and this constancy depends on such organs having generally been subjected to less change in the adaptation of the species to their conditions of life.

That the mere physiological importance of an organ does not determine the classificatory value, is almost shown by the one fact, that in allied groups, in which the same organ, as we have every reason to suppose, has nearly the same physiological value, its classificatory value is widely different.

No naturalist can have worked at any group without being struck with this fact; and it has been most fully acknowledged in the writings of almost every author.

It will suffice to quote the highest authority, Robert Brown, who in speaking of certain organs in the Proteaceae, says their generic importance, `like that of all their parts, not only in this but, as I apprehend, in every natural family, is very unequal, and in some cases seems to be entirely lost.' Again in another work he says, the genera of the Connaraceae `differ in having one or more ovaria, in the existence or absence of albumen, in the imbricate or valvular aestivation.

Robert Brown
Robert Brown

Proteaceae
Proteaceae
13 - Mutual Affinities of Organic Beings: Morphology: Embryology: Rudimentary Or 13-05 - Descent always used in classification 30 As descent has universally been used in classing together the individuals of the same species, though the males and females and larvae are sometimes extremely different; and as it has been used in classing varieties which have undergone a certain, and sometimes a considerable amount of modification, may not this same element of descent have been unconsciously used in grouping species under genera, and genera under higher groups, though in these cases the modification has been greater in degree, and has taken a longer time to complete?

I believe it has thus been unconsciously used; and only thus can I understand the several rules and guides which have been followed by our best systematists.

We have no written pedigrees; we have to make out community of descent by resemblances of any kind.

Therefore we choose those characters which, as far as we can judge, are the least likely to have been modified in relation to the conditions of life to which each species has been recently exposed.

Rudimentary structures on this view are as good as, or even sometimes better than, other parts of the organisation.

We care not how trifling a character may be let it be the mere inflection of the angle of the jaw, the manner in which an insect's wing is folded, whether the skin be covered by hair or feathers if it prevail throughout many and different species, especially those having very different habits of life, it assumes high value; for we can account for its presence in so many forms with such different habits, only by its inheritance from a common parent.

We may err in this respect in regard to single points of structure, but when several characters, let them be ever so trifling, occur together throughout a large group of beings having different habits, we may feel almost sure, on the theory of descent, that these characters have been inherited from a common ancestor.

And we know that such correlated or aggregated characters have especial value in classification.

We can understand why a species or a group of species may depart, in several of its most important characteristics, from its allies, and yet be safely classed with them.

This may be safely done, and is often done, as long as a sufficient number of characters, let them be ever so unimportant, betrays the hidden bond of community of descent.

Let two forms have not a single character in common, yet if these extreme forms are connected together by a chain of intermediate groups, we may at once infer their community of descent, and we put them all into the same class.

As we find organs of high physiological importance those which serve to preserve life under the most diverse conditions of existence are generally the most constant, we attach especial value to them; but if these same organs, in another group or section of a group, are found to differ much, we at once value them less in our classification.

We shall hereafter, I think, clearly see why embryological characters are of such high classificatory importance.

embryo
embryo