M Database Inspector (cheetah)
Not logged in. Login


28 rows, page 6 of 7 (4/p)
1 2 3 4 5 6 7

Export to Excel select * from OriginOfSpecies where title like '%summary%' order by subject, title, ordinal limit 20, 4 (Page 6: Row)
subject
title
ordinal
description
07 - Instinct 07-11 - Summary 10 Summary.

I have endeavoured briefly in this chapter to show that the mental qualities of our domestic animals vary, and that the variations are inherited.

Still more briefly I have attempted to show that instincts vary slightly in a state of nature.

No one will dispute that instincts are of the highest importance to each animal.

Therefore I can see no difficulty, under changing conditions of life, in natural selection accumulating slight modifications of instinct to any extent, in any useful direction. In some cases habit or use and disuse have probably come into play.

I do not pretend that the facts given in this chapter strengthen in any great degree my theory; but none of the cases of difficulty, to the best of my judgment, annihilate it.

On the other hand, the fact that instincts are not always absolutely perfect and are liable to mistakes; that no instinct has been produced for the exclusive good of other animals, but that each animal takes advantage of the instincts of others; that the canon in natural history, of 'natura non facit saltum' is applicable to instincts as well as to corporeal structure, and is plainly explicable on the foregoing views, but is otherwise inexplicable, all tend to corroborate the theory of natural selection.

This theory is, also, strengthened by some few other facts in regard to instincts; as by that common case of closely allied, but certainly distinct, species, when inhabiting distant parts of the world and living under considerably different conditions of life, yet often retaining nearly the same instincts.

For instance, we can understand on the principle of inheritance, how it is that the thrush of South America lines its nest with mud, in the same peculiar manner as does our British thrush: how it is that the male wrens (Troglodytes) of North America, build 'cock-nests,' to roost in, like the males of our distinct Kitty-wrens, a habit wholly unlike that of any other known bird.

thrush
thrush

wren
wren


Finally, it may not be a logical deduction, but to my imagination it is far more satisfactory to look at such instincts as the young cuckoo ejecting its foster-brothers, ants making slaves, -- the larvae of ichneumonidae feeding within the live bodies of caterpillars, not as specially endowed or created instincts, but as small consequences of one general law, leading to the advancement of all organic beings, namely, multiply, vary, let the strongest live and the weakest die.

cuckoo
cuckoo

ichneumonidae
ichneumonidae

caterpillar
caterpillar
08 - Hybridism 08-09 - Summary 10 Summary of Chapter.

First crosses between forms sufficiently distinct to be ranked as species, and their hybrids, are very generally, but not universally, sterile.

The sterility is of all degrees, and is often so slight that the two most careful experimentalists who have ever lived, have come to diametrically opposite conclusions in ranking forms by this test.

The sterility is innately variable in individuals of the same species, and is eminently susceptible of favourable and unfavourable conditions.

The degree of sterility does not strictly follow systematic affinity, but is governed by several curious and complex laws.

It is generally different, and sometimes widely different, in reciprocal crosses between the same two species.

It is not always equal in degree in a first cross and in the hybrid produced from this cross.

In the same manner as in grafting trees, the capacity of one species or variety to take on another, is incidental on generally unknown differences in their vegetative systems, so in crossing, the greater or less facility of one species to unite with another, is incidental on unknown differences in their reproductive systems.

graft
graft

tree
tree


There is no more reason to think that species have been specially endowed with various degrees of sterility to prevent them crossing and blending in nature, than to think that trees have been specially endowed with various and somewhat analogous degrees of difficulty in being grafted together in order to prevent them becoming inarched in our forests.

The sterility of first crosses between pure species, which have their reproductive systems perfect, seems to depend on several circumstances; in some cases largely on the early death of the embryo.

embryo
embryo


The sterility of hybrids, which have their reproductive systems imperfect, and which have had this system and their whole organisation disturbed by being compounded of two distinct species, seems closely allied to that sterility which so frequently affects pure species, when their natural conditions of life have been disturbed.

This view is supported by a parallelism of another kind; namely, that the crossing of forms only slightly different is favourable to the vigour and fertility of their offspring; and that slight changes in the conditions of life are apparently favourable to the vigour and fertility of all organic beings.

It is not surprising that the degree of difficulty in uniting two species, and the degree of sterility of their hybrid-offspring should generally correspond, though due to distinct causes; for both depend on the amount of difference of some kind between the species which are crossed.

Nor is it surprising that the facility of effecting a first cross, the fertility of the hybrids produced, and the capacity of being grafted together though this latter capacity evidently depends on widely different circumstances should all run, to a certain extent, parallel with the systematic affinity of the forms which are subjected to experiment; for systematic affinity attempts to express all kinds of resemblance between all species.

First crosses between forms known to be varieties, or sufficiently alike to be considered as varieties, and their mongrel offspring, are very generally, but not quite universally, fertile.

Nor is this nearly general and perfect fertility surprising, when we remember how liable we are to argue in a circle with respect to varieties in a state of nature; and when we remember that the greater number of varieties have been produced under domestication by the selection of mere external differences, and not of differences in the reproductive system.

In all other respects, excluding fertility, there is a close general resemblance between hybrids and mongrels.

Finally, then, the facts briefly given in this chapter do not seem to me opposed to, but even rather to support the view, that there is no fundamental distinction between species and varieties.

jaglion
jaglion

liger
liger

zeedonk
zeedonk
10 - On The Geological Succession of Organic Beings 10-10 - Summary of preceding and present chapters 10 I have attempted to show that the geological record is extremely imperfect; that only a small portion of the globe has been geologically explored with care; that only certain classes of organic beings have been largely preserved in a fossil state; that the number both of specimens and of species, preserved in our museums, is absolutely as nothing compared with the incalculable number of generations which must have passed away even during a single formation; that, owing to subsidence being necessary for the accumulation of fossiliferous deposits thick enough to resist future degradation, enormous intervals of time have elapsed between the successive formations; that there has probably been more extinction during the periods of subsidence, and more variation during the periods of elevation, and during the latter the record will have been least perfectly kept; that each single formation has not been continuously deposited; that the duration of each formation is, perhaps, short compared with the average duration of specific forms; that migration has played an important part in the first appearance of new forms in any one area and formation; that widely ranging species are those which have varied most, and have oftenest given rise to new species; and that varieties have at first often been local.

All these causes taken conjointly, must have tended to make the geological record extremely imperfect, and will to a large extent explain why we do not find interminable varieties, connecting together all the extinct and existing forms of life by the finest graduated steps.

He who rejects these views on the nature of the geological record, will rightly reject my whole theory.

For he may ask in vain where are the numberless transitional links which must formerly have connected the closely allied or representative species, found in the several stages of the same great formation.

He may disbelieve in the enormous intervals of time which have elapsed between our consecutive formations; he may overlook how important a part migration must have played, when the formations of any one great region alone, as that of Europe, are considered; he may urge the apparent, but often falsely apparent, sudden coming in of whole groups of species.

europe
europe


He may ask where are the remains of those infinitely numerous organisms which must have existed long before the first bed of the Silurian system was deposited: I can answer this latter question only hypothetically, by saying that as far as we can see, where our oceans now extend they have for an enormous period extended, and where our oscillating continents now stand they have stood ever since the Silurian epoch; but that long before that period, the world may have presented a wholly different aspect; and that the older continents, formed of formations older than any known to us, may now all be in a metamorphosed condition, or may lie buried under the ocean.

Passing from these difficulties, all the other great leading facts in palaeontology seem to me simply to follow on the theory of descent with modification through natural selection.

We can thus understand how it is that new species come in slowly and successively; how species of different classes do not necessarily change together, or at the same rate, or in the same degree; yet in the long run that all undergo modification to some extent.

The extinction of old forms is the almost inevitable consequence of the production of new forms.

We can understand why when a species has once disappeared it never reappears.

Groups of species increase in numbers slowly, and endure for unequal periods of time; for the process of modification is necessarily slow, and depends on many complex contingencies.

The dominant species of the larger dominant groups tend to leave many modified descendants, and thus new sub-groups and groups are formed.

As these are formed, the species of the less vigorous groups, from their inferiority inherited from a common progenitor, tend to become extinct together, and to leave no modified offspring on the face of the earth.

Earth
Earth


But the utter extinction of a whole group of species may often be a very slow process, from the survival of a few descendants, lingering in protected and isolated situations.

When a group has once wholly disappeared, it does not reappear; for the link of generation has been broken.

We can understand how the spreading of the dominant forms of life, which are those that oftenest vary, will in the long run tend to people the world with allied, but modified, descendants; and these will generally succeed in taking the places of those groups of species which are their inferiors in the struggle for existence.

Hence, after long intervals of time, the productions of the world will appear to have changed simultaneously.

We can understand how it is that all the forms of life, ancient and recent, make together one grand system; for all are connected by generation.

We can understand, from the continued tendency to divergence of character, why the more ancient a form is, the more it generally differs from those now living.

Why ancient and extinct forms often tend to fill up gaps between existing forms, sometimes blending two groups previously classed as distinct into one; but more commonly only bringing them a little closer together.

The more ancient a form is, the more often, apparently, it displays characters in some degree intermediate between groups now distinct; for the more ancient a form is, the more nearly it will be related to, and consequently resemble, the common progenitor of groups, since become widely divergent.

Extinct forms are seldom directly intermediate between existing forms; but are intermediate only by a long and circuitous course through many extinct and very different forms.

We can clearly see why the organic remains of closely consecutive formations are more closely allied to each other, than are those of remote formations; for the forms are more closely linked together by generation: we can clearly see why the remains of an intermediate formation are intermediate in character.

The inhabitants of each successive period in the world's history have beaten their predecessors in the race for life, and are, in so far, higher in the scale of nature; and this may account for that vague yet ill-defined sentiment, felt by many palaeontologists, that organisation on the whole has progressed.

If it should hereafter be proved that ancient animals resemble to a certain extent the embryos of more recent animals of the same class, the fact will be intelligible.

embryo
embryo


The succession of the same types of structure within the same areas during the later geological periods ceases to be mysterious, and is simply explained by inheritance.

If then the geological record be as imperfect as I believe it to be, and it may at least be asserted that the record cannot be proved to be much more perfect, the main objections to the theory of natural selection are greatly diminished or disappear.

On the other hand, all the chief laws of palaeontology plainly proclaim, as it seems to me, that species have been produced by ordinary generation: old forms having been supplanted by new and improved forms of life, produced by the laws of variation still acting round us, and preserved by Natural Selection.

fossil
fossil
12 - Geographical Distribution -- continued 12-60 - Summary of the last and present chapters 10 In these chapters I have endeavoured to show, that if we make due allowance for our ignorance of the full effects of all the changes of climate and of the level of the land, which have certainly occurred within the recent period, and of other similar changes which may have occurred within the same period; if we remember how profoundly ignorant we are with respect to the many and curious means of occasional transport, a subject which has hardly ever been properly experimentised on; if we bear in mind how often a species may have ranged continuously over a wide area, and then have become extinct in the intermediate tracts, I think the difficulties in believing that all the individuals of the same species, wherever located, have descended from the same parents, are not insuperable.

And we are led to this conclusion, which has been arrived at by many naturalists under the designation of single centres of creation, by some general considerations, more especially from the importance of barriers and from the analogical distribution of sub-genera, genera, and families.

With respect to the distinct species of the same genus, which on my theory must have spread from one parent-source; if we make the same allowances as before for our ignorance, and remember that some forms of life change most slowly, enormous periods of time being thus granted for their migration, I do not think that the difficulties are insuperable; though they often are in this case, and in that of the individuals of the same species, extremely grave.

As exemplifying the effects of climatal changes on distribution, I have attempted to show how important has been the influence of the modern Glacial period, which I am fully convinced simultaneously affected the whole world, or at least great meridional belts.

As showing how diversified are the means of occasional transport, I have discussed at some little length the means of dispersal of fresh-water productions.

If the difficulties be not insuperable in admitting that in the long course of time the individuals of the same species, and likewise of allied species, have proceeded from some one source; then I think all the grand leading facts of geographical distribution are explicable on the theory of migration (generally of the more dominant forms of life), together with subsequent modification and the multiplication of new forms.

We can thus understand the high importance of barriers, whether of land or water, which separate our several zoological and botanical provinces.
island
island